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Abstract

Conic programs that seek to minimize a linear function over an intersection of sym-
metric (self-dual and homogeneous) cones are amenable to highly efficient primal-dual
interior point methods, which are implemented by many popular off-the-shelf conic
solvers. On the other hand, many useful conic sets cannot be modeled exactly or can
be modeled more efficiently using cones that are not symmetric. Algorithms for non-
symmetric cones have been implemented in significantly fewer solvers. Practically ef-
ficient, self-concordant barrier functions have not been previously suggested for many
useful nonsymmetric cones. For the nonsymmetric cones with known barriers, there
is little published work on how to implement numerically stable and computationally
fast barrier oracles for interior point methods.

We begin this thesis by describing the interior point algorithm we implement in the
solver Hypatia for exotic cones. The exotic cones are a broad class of cones (including
symmetric and nonsymmetric cones) that admit a small set of oracles needed by Hy-
patia’s algorithm. We justify a number of practical algorithmic enhancements from an
empirical standpoint. We derive new logarithmically-homogeneous, self-concordant
barrier functions for several useful nonsymmetric cones. In Chapter 3, these are bar-
riers for cones derived from spectral functions on Euclidean Jordan algebras while in
Chapter 5, these are barriers related to sum-of-squares polynomial cones. We show
that using these cones with our new barriers is computationally favorable in com-
parison to alternative formulations. We show how to evaluate the oracles needed by
Hypatia’s algorithm for these barriers and others in a computationally efficient and
numerically stable fashion throughout Chapters 3 to 5.

In the final two chapters, we derive efficient techniques for calculating information
related to convex conjugates of the barriers for seven nonsymmetric cones. This
information is not used by Hypatia, but is necessary for the alternative algorithm by
Dahl and Andersen [2021] that is implemented by the solver MOSEK. We implement
the stepping procedure described by Dahl and Andersen [2021] in Hypatia and make
some empirical comparisons between MOSEK’s algorithm and Hypatia’s.
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Chapter 1

Introduction

Any convex optimization problem can be expressed in conic form:

inf𝑥 𝑐⊤𝑥 : (1.1a)

𝑏− 𝐴𝑥 = 0, (1.1b)

ℎ−𝐺𝑥 ∈ 𝒦. (1.1c)

Here 𝑥 is a decision variable, 𝑏, 𝑐, and ℎ are vectors of appropriate size, while 𝐴 and

𝐺 are linear operators. 𝒦 is a conic set, i.e. a set such that for any 𝑤 ∈ 𝒦, we have

that 𝜃𝑤 ∈ 𝒦 for all nonnegative constants 𝜃.

Under certain (typically nonrestrictive) conditions, a conic problem admits a sim-

ple and easily checkable certificate of optimality, primal infeasibility, or dual infeasi-

bility [Permenter et al., 2017]. Practitioners have access to a variety of off-the-shelf

solvers, which are able to return such certificates for (1.1). Most of these solvers

implement primal-dual interior point methods (PDIPMs). Some examples are CSDP

[Borchers, 1999], CVXOPT [Andersen et al., 2011], ECOS [Serrano, 2015], MOSEK

[MOSEK ApS, 2020], SDPA [Yamashita et al., 2003], SeDuMi [Labit et al., 2002],

and SDPT3 [Toh et al., 1999]. The PDIPMs implemented by these solvers generate a

series of primal and dual iterates approximately following a central path. The central

path can be thought of a set of primal-dual points that satisfy a set of nonlinear

equations that depend on the problem data of (1.1) and a barrier function of 𝒦.
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The majority of this thesis is dedicated to improving PDIPMs for a broad class of

problems in the form of (1.1).

Many popular PDIPM solvers are specialized to support symmetric cones. A

symmetric cone is self-dual (the dual cone is equal to the primal) and homogeneous

(the set of automorphisms of the cone act transitively in the cone). The symmetric

cones useful for optimization are the nonnegative orthant, the second order cone,

and the positive semidefinite (PSD) matrices. In their seminal work, Nesterov and

Todd [1997, 1998] show that these cones (which the authors refer to as the self-scaled

cones) contain special points (the so-called Nesterov-Todd scaling points), which are

used to derive good approximations of the barrier far from the current iterate. In

addition, the symmetric cones admit simple barrier functions with highly efficient

oracles for various parts of PDIPMs. These properties are usually exploited by the

PDIPM solvers described.

Many useful conic sets are nonsymmetric. For example, the set {(𝑢, 𝑣, 𝑤) : 𝑢 ≤

𝑣 log(𝑤/𝑣)} (when permuted, commonly referred to as the exponential cone) is useful

for modeling the logarithm function, and cannot be represented exactly using sym-

metric cones. An alternative example is the cone of sum-of-squares polynomials that

we describe in Chapter 5. This cone can be represented with symmetric cones, but

the representation requires a lifting into a higher dimensional space.

A longstanding approach to optimizing over nonsymmetric cones has been to either

approximate the nonsymmetric cone with symmetric cones (e.g. implemented by the

modeling tool CVXQUAD [Fawzi et al., 2018]), or, when possible, to build exact

higher dimensional representations using symmetric cones. A variety of modeling

techniques are described by Ben-Tal and Nemirovski [2001], and modeling tools such

as disciplined convex programming packages (see CVX [Grant et al., 2006], CVXPY

[Diamond and Boyd, 2016], and Convex.jl [Udell et al., 2014]) and MathOptInterface’s

bridges [Legat et al., 2020] are designed to facilitate such transformations. On the

other hand, off-the shelf solvers that handle nonsymmetric cones directly within a

PDIPM have not existed until recently.

Early algorithmic frameworks for optimizing over nonsymmetric cones have been

18



suggested by Nesterov et al. [1999] and Nesterov [2012], but have some limiting fac-

tors in comparison to their symmetric counterparts. The high-level algorithms in both

papers require derivative information from the conjugates of the barrier functions of

the cones in the problem, and it is not clear when this can be evaluated efficiently.

Specifically, the only nonsymmetric cones for which a conjugate of the barrier function

has been written in closed form are the three-dimensional exponential cone [Serrano,

2015], the three-dimensional power cone [Nesterov, 2012], and the cone of sparse pos-

itive semidefinite matrices with chordal sparsity [Andersen et al., 2013]. Additionally,

Nesterov et al. [1999] requires solving a linear system in each iteration that is twice

the size of the linear systems that arise in symmetric algorithms.

More recent nonsymmetric algorithms bypass some of the aforementioned issues.

The algorithm by Skajaa and Ye [2015] does so by requiring that iterates remain close

to the central path. A key advantage of this algorithm is that it requires very few

oracles for each primal cone in the problem, and doesn’t require oracles relating to

the conjugate of the primal barrier. This algorithm is the basis of the PDIPM imple-

mented in our interior point solver Hypatia, which we discuss in detail in Chapter 2.

An alternative algorithm, implemented by the state-of-the-art solver MOSEK is

based on a technique by Tunçel [2001], Myklebust and Tunçel [2014] which generalizes

the concept of scaling matrices from symmetric cones. Like the algorithm by Skajaa

and Ye [2015], the linear systems solved in each iteration are equal in size to those

arising in symmetric algorithms. Unlike the algorithm by Skajaa and Ye [2015],

information about the conjugate gradient is required to compute search directions.

1.1 Choosing natural over extended formulations

From hereon we refer to the cones supported by MOSEK as the standard cones

(to reflect that they are supported by an accessible, state-of-the-art conic solver).

These are the symmetric cones, the three-dimensional exponential cone, and the

three-dimensional power cone. On the other hand, we use the term exotic cone

to refer to any cone that Hypatia could support- requiring only that it admits effi-
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ciently computable oracles for Hypatia’s algorithm. Exotic cones can be symmetric

or nonsymmetric.

In Coey et al. [2021d], we provide numerous computational arguments for sup-

porting exotic cones. The process of transforming a general conic problem into a conic

extended formulation (EF) that uses only standard cones often requires introducing

many artificial variables, linear equalities, or higher dimensional conic constraints.

By supporting exotic cones, Hypatia can be used to directly solve simpler, smaller

natural formulations (NFs). In Coey et al. [2021d, Section 5], a number of NFs are

solved using Hypatia and equivalent EFs are solved using MOSEK. Significant com-

putational advantages are shown from solving the NFs with Hypatia compared to

solving the EFs with either Hypatia or MOSEK, especially in terms of solve time

and memory usage. The NFs are also typically faster and less memory-intensive to

generate. These results motivate us to develop enhancements for PDIPMs, such as

the PDIPM implemented in Hypatia, for a broad variety of exotic cones. Such en-

hancements can be in the form of of algorithmic innovations, or improved numerical

techniques for evaluating oracles of cones. This thesis studies both.

1.2 The Hypatia solver

Hypatia [Coey et al., 2021d] is an open-source, extensible conic primal-dual interior

point solver.1 Hypatia is written in the Julia language [Bezanson et al., 2017] and

is accessible through a flexible, low-level native interface or the modeling tool JuMP

[Dunning et al., 2017]. A key feature of Hypatia is a generic cone interface that

allows users to define new exotic cones. Adding an exotic cone to Hypatia amounts

to implementing the oracles we describe in Section 2.2 for either the cone or its dual.

Defining a new cone through Hypatia’s cone interface makes both the cone and its

dual available for use in conic formulations. We have already predefined 23 useful

exotic cone types (some with multiple variants) in Hypatia.

1Hypatia is available at github.com/chriscoey/Hypatia.jl under the MIT license.
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1.3 Notation

For a natural number 𝑑, we define the index set J𝑑K := {1, 2, . . . , 𝑑}. Often we

construct vectors with round parentheses, e.g. (𝑎, 𝑏, 𝑐), and matrices with square

brackets, e.g. [ 𝑎 𝑏
𝑐 𝑑 ]. We use 𝑠𝑖∈J𝑑K for the product of elements (𝑠1, . . . , 𝑠𝑑). For a set

𝒞, cl(𝒞) and int(𝒞) denote the closure and interior of 𝒞, respectively.

R denotes the space of reals, and R≥, R>, R≤, R< denote the nonnegative, positive,

nonpositive, and negative reals. R𝑑 is the space of 𝑑-dimensional real vectors, and

R𝑑1×𝑑2 is the 𝑑1-by-𝑑2-dimensional real matrices. The vectorization operator vec :

R𝑑1×𝑑2 → R𝑑1𝑑2 maps matrices to vectors by stacking columns, and its inverse operator

is mat𝑑1,𝑑2 : R𝑑1𝑑2 → R𝑑1×𝑑2 .

S𝑑 is the space of symmetric matrices with side dimension 𝑑, and S𝑑
⪰ and S𝑑

≻ denote

the positive semidefinite and positive definite symmetric matrices. The inequality

𝑆 ⪰ 𝑍 is equivalent to 𝑆 − 𝑍 ∈ S𝑑
⪰ (and similarly for the strict inequality ≻ and

S𝑑
≻). We let sd(𝑑) := 𝑑(𝑑 + 1)/2 be the dimension of the vectorized upper triangle

of S𝑑. We overload the vectorization operator vec : S𝑑 → Rsd(𝑑) to perform an svec

transformation, which rescales off-diagonal elements by
√
2 and stacks columns of the

upper triangle (or equivalently, rows of the lower triangle). For example, for 𝑆 ∈ S3

we have sd(3) = 6 and vec(𝑆) = (𝑆1,1,
√
2𝑆1,2, 𝑆2,2,

√
2𝑆1,3,

√
2𝑆2,3, 𝑆3,3) ∈ Rsd(3). The

inverse mapping mat : Rsd(𝑑) → S𝑑 is well-defined.

For a vector or matrix 𝐴, the transpose is 𝐴⊤ and the trace is tr(𝐴). We use the

standard inner product on R𝑑, i.e. 𝑠⊤𝑧 =
∑︀

𝑖∈J𝑑K 𝑠𝑖𝑧𝑖 for 𝑠, 𝑧 ∈ R𝑑, which equips R𝑑

with the standard norm ‖𝑠‖ = (𝑠⊤𝑠)1/2. The linear operators vec and mat preserve

inner products, e.g. vec(𝑆)⊤ vec(𝑍) = tr(𝑆⊤𝑍) for 𝑆, 𝑍 ∈ R𝑑1×𝑑2 or 𝑆,𝑍 ∈ S𝑑. For a

linear operator 𝑀 : 𝐴→ 𝐵, the adjoint 𝑀* : 𝐵 → 𝐴 is the unique operator satisfying

⟨𝑠,𝑀𝑧⟩𝐴 = ⟨𝑧,𝑀*𝑠⟩𝐵 for all 𝑠 ∈ 𝐴 and 𝑧 ∈ 𝐵. Diag : R𝑑 → S𝑑 is the diagonal matrix

of a given vector, and diag : S𝑑 → R𝑑 is the vector of the diagonal of a given matrix.

For dimensions implied by context, 𝑒 is a vector of 1s, 𝑒𝑖 is the 𝑖th unit vector, and 0

is a vector or matrix of 0s. 𝐼(𝑑) is the identity in R𝑑×𝑑.

|𝑥| is the absolute value of 𝑥 ∈ R and log(𝑥) is the natural logarithm of 𝑥 > 0.
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det(𝑋) is the determinant of 𝑋 ∈ S𝑑, and logdet(𝑋) is the log-determinant of 𝑋 ≻ 0.

For a vector 𝑥 ∈ R𝑑, ‖𝑥‖∞ = max𝑖∈J𝑑K|𝑥𝑖| is the ℓ∞ norm and ‖𝑥‖1 =
∑︀

𝑖∈J𝑑K|𝑥𝑖| is the

ℓ1 norm.

The 𝑘th derivative of a function 𝑓 evaluated at a point 𝑤 is ∇𝑘𝑓(𝑤), which may

be interpreted as an operator. For example, the second directional derivative of 𝑓 at

𝑤 applied in the direction 𝑟 twice is ∇2𝑓(𝑤)[𝑟, 𝑟] = ⟨∇2𝑓(𝑤)[𝑟], 𝑟⟩. Often we omit

the point at which the derivative is evaluated if this is clear from context. We use

subscripts for partial derivatives, for example ∇𝑤𝑓 .

1.4 Cones and barrier functions

Let 𝒦 be a proper cone in R𝑞, i.e. a conic subset of R𝑞 that is closed, convex, pointed,

and full-dimensional (see Skajaa and Ye [2015]). Note that requiring 𝒦 to be a subset

of R𝑞 simplifies our notation but is not restrictive, e.g. for the PSD cone, we use the

standard svec vectorization. The dual cone of 𝒦 is 𝒦*, which is also a proper cone in

R𝑞:

𝒦* := {𝑧 ∈ R𝑞 : 𝑠⊤𝑧 ≥ 0,∀𝑠 ∈ 𝒦}. (1.2)

Analysis of conic interior point methods relies heavily on the notion of logarithmically-

homogeneous, self-concordant barriers (LHSCBs). Following Nesterov and Nemirovskii

[1994, Sections 2.3.1 and 2.3.3], 𝑓 : int(𝒦)→ R is a 𝜈-LHSCB for 𝒦, where 𝜈 ≥ 1 is

the LHSCB parameter, if it is three times continuously differentiable, strictly convex,

satisfies 𝑓(𝑤𝑖)→∞ along every sequence 𝑤𝑖 ∈ int(𝒦) converging to the boundary of

𝒦, and:

⃒⃒
∇3𝑓(𝑤)[𝑟, 𝑟, 𝑟]

⃒⃒
≤ 2

(︀
∇2𝑓(𝑤)[𝑟, 𝑟]

)︀3/2 ∀𝑤 ∈ int(𝒦), 𝑟 ∈ R𝑑, (1.3a)

𝑓(𝜃𝑤) = 𝑓(𝑤)− 𝜈 log(𝜃) ∀𝑤 ∈ int(𝒦), 𝜃 > 0. (1.3b)

Complexity analysis of idealized PDIPMs shows that they converge to 𝜀 tolerance

in 𝒪(
√
𝜈 log(1/𝜀)) iterations, where 𝜈 is the barrier parameter of the LHSCB. A key

result by Skajaa and Ye [2015] is the affirmation that their proposed non-symmetric
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interior point method matches this best-known complexity.

A Cartesian product 𝒦 = 𝒦1 × · · · × 𝒦𝐾 of 𝐾 proper cones is a proper cone, and

its dual cone is 𝒦* = 𝒦*
1 × · · · × 𝒦*

𝐾 . In this case, if 𝑓𝑘 is a 𝜈𝑘-LHSCB for 𝒦𝑘, then∑︀
𝑘∈J𝐾K 𝑓𝑘 is an LHSCB for 𝒦 with parameter

∑︀
𝑘∈J𝐾K 𝜈𝑘 [Nesterov and Nemirovskii,

1994, Proposition 2.3.3]. We call 𝒦 a primitive cone if it cannot be written as a

Cartesian product of two or more lower-dimensional cones (i.e. 𝐾 must equal 1).

Note 𝒦* is primitive if and only if 𝒦 is primitive. Primitive proper cones are the

fundamental building blocks of conic formulations.

Let 𝑓 : dom(𝑓) → R be an arbitrary function with domain dom(𝑓). We define

𝑓 * : dom(𝑓 *)→ R∪∞ of 𝑓 as the modified Legendre-Fenchel transformation (similar

to Zhang [2004, page 483]):

𝑓 *(𝑟) = sup𝑤∈dom(𝑓){−⟨𝑤, 𝑟⟩ − 𝑓(𝑤)}, (1.4)

If 𝑓 is an LHSCB for 𝒦, then 𝑓 * is an LHSCB for 𝒦* [Nesterov and Todd, 1997, (2.6)]

and we refer to it as the conjugate barrier.

1.5 Thesis contributions and outline

In Chapter 2 we describe the PDIPM implemented in our interior point solver Hypa-

tia, which allows optimizing over exotic cones. We introduce a number of practical

performance enhancements and provide computational evidence that these enhance-

ments improve iteration counts and solve times on a variety of test problems. We also

introduce a benchmark set of problems that we reuse in Chapter 7 . The algorithm

from this chapter requires a specific set of oracles that are derived for various classes

of cones in later sections. In Chapter 3, we focus on the class of nonsymmetric cones

that can be described using epigraphs of spectral functions. We show that this is a

useful class of cones and provide cases of cones in this class that admit simple LHSCBs

with small parameters. We show that the oracles for those barriers are efficient to

compute. Chapter 4 is focused on deriving oracles for cones that can be described as

23



linear slices of the PSD cone. This class encompasses a number of cones implemented

in Hypatia, including several polynomial-like cones that we describe in Chapter 5.

In Chapter 5 we describe several polynomial cones that are inspired by the cone of

sum-of-squares polynomials. These can be thought of as polynomial generalizations

of three conic sets. We provide new LHSCBs for three new cones, and provide some

computational justification for using these three specialized cones in place of alterna-

tive formulations. In Chapter 6 and Chapter 7, we shift our focus from the algorithm

implemented in Hypatia to MOSEK’s algorithm. MOSEK’s algorithm requires con-

jugate gradient information. In Chapter 6 we show how to calculate this information

efficiently for seven useful nonsymmetric cones. These conjugate gradients have not

been written explicitly before. Chapter 7 provides a computational analysis and dis-

cussion of the value of including conjguate gradient information.
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Chapter 2

Hypatia’s algorithm: practical

algorithmic enhancements for a

nonsymmetric PDIPM

This chapter is based on the submitted paper Coey et al. [2021c].

2.1 Introduction

2.1.1 The Skajaa-Ye algorithm

As described in Chapter 1, the algorithm by Skajaa and Ye [2015], henceforth referred

to as SY, is the earliest PDIPM for non-symmetric cones that matches the best known

worst-case complexity of symmetric PDIPMs and does not require any conjugate

barrier information. The algorithm approximately traces the central path of the

homogeneous self-dual embedding (HSDE) [Andersen et al., 2003, Xu et al., 1996],

allowing for infeasible starts and detection of primal or dual infeasiblity certificates.

This final iterate provides an approximate conic certificate for the conic problem, if

a conic certificate exists. The SY algorithm relies on an idea by Nesterov [2012] that

a high quality prediction direction (enabling a long step and rapid progress towards

a solution) can be computed if the current iterate is in close proximity to the central
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path. To restore centrality after each prediction step, SY performs a series of centering

steps.

By using a different definition of central path proximity to Nesterov [2012], SY

avoids needing conjugate LHSCB oracles. Indeed, a major advantage of SY is that

it only requires access to a few tractable oracles for the primal cone: an initial inte-

rior point, feasibility check, and gradient and Hessian evaluations for the LHSCB. In

our experience, for a large class of proper cones, these oracles can be evaluated ana-

lytically, i.e. without requiring the implementation of iterative numerical procedures

(such as optimization) that can be expensive and may need numerical tuning.

2.1.2 Practical algorithmic developments

For many proper cones of interest, including most of Hypatia’s non-symmetric cones,

we are aware of LHSCBs with tractable oracles for either the cone or its dual cone but

not both. Suppose a problem involves a Cartesian product of exotic cones, some with

primal oracles implemented and some with dual oracles implemented (as in several

example formulations described in Coey et al. [2021d]). In this case, SY can solve

neither the primal problem nor its conic dual, as SY requires primal oracles. Hypatia’s

algorithm generalizes SY to allow a conic formulation over any Cartesian product of

exotic cones.

The focus of Skajaa and Ye [2015] is demonstrating that SY has the best known

iteration complexity for conic PDIPMs. This complexity analysis was corrected by

Papp and Yıldız [2017], who implemented SY in their recent MATLAB solver Alfonso

[Papp and Yıldız, 2020, 2021]. It is well known that performant PDIPM implemen-

tations tend to violate assumptions used in iteration complexity analysis, so in this

chapter we are not concerned with iteration complexity. Our goal is to reduce itera-

tion counts and solve times in practice, by enhancing the performance of the interior

point stepping procedure proposed by SY and implemented by Alfonso.

The basic SY-like stepping procedure computes a prediction or centering direction

by solving a large structured linear system, performs a backtracking line search in

the direction, and steps as far as possible given a restrictive central path proximity
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condition. We propose a sequence of four practical performance enhancements.

Less restrictive proximity. We use a relaxed central path proximity condition,

allowing longer prediction steps and fewer centering steps.

Third order adjustments. After computing the prediction or centering direction,

we compute a third order adjustment (TOA) direction using a new third order

oracle (TOO) for exotic cones. We use a line search in the unadjusted direction

to determine how to combine it with the TOA direction, before performing a

second line search and stepping in the new adjusted direction.

Curve search. Due to the central path proximity checks, each backtracking line

search can be quite expensive. Instead of performing two line searches, we use

a single backtracking search along a particular quadratic curve of combinations

of the unadjusted and TOA directions.

Combined directions. Unlike SY, most conic PDIPMs do not use separate predic-

tion and centering phases. We compute the prediction and centering directions

and their associated TOA directions, then perform a backtracking search along

a quadratic curve of combinations of all four directions.

Our TOA approach is distinct from the techniques by Mehrotra [1992], Dahl and

Andersen [2021] that also use higher order LHSCB information.1 Unlike these tech-

niques, we derive adjustments (using the TOO) for both the prediction and centering

directions. Our TOO has a simpler and more symmetric structure than the third

order term used by Dahl and Andersen [2021], and we leverage this for fast and nu-

merically stable evaluations. Whereas the method by Mehrotra [1992] only applies

to symmetric cones, and Dahl and Andersen [2021] test their technique only for the

standard exponential cone, we implement and test our TOO for all of Hypatia’s 23

predefined cones. In our experience, requiring a tractable TOO is only as restrictive

1To avoid confusion, we do not use the term ‘corrector’. In the terminology of Mehrotra [1992],
Dahl and Andersen [2021] our TOA approach is a type of ‘higher order corrector’ technique, but also
our unadjusted centering direction is referred to by Skajaa and Ye [2015], Papp and Yıldız [2017] as
the ‘corrector’ direction.
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as requiring tractable gradient and Hessian oracles. We show that the time complex-

ity of the TOO is no higher than that of the other required oracles for each of our

cones. To illustrate, we describe efficient and numerically stable TOO procedures for

several cones that can be characterized as intersections of slices of the PSD cone.

Although this chapter is mainly concerned with the stepping procedures, we also

outline our implementations of other key algorithmic components. These include

preprocessing of problem data, finding an initial iterate, the solution of structured

linear systems for search directions, and efficient backtracking searches with central

path proximity checks. We note that Hypatia has a variety of algorithmic options for

these components; these different options can have a dramatic impact on overall solve

time and memory usage, but in most cases they have minimal effect on the iteration

count. We only describe and test one set of (default) options for these components.

2.1.3 Benchmark instances and computational testing

We implement and briefly describe 37 applied examples (available in Hypatia’s ex-

amples folder), each of which has options for creating formulations of different types

and sizes. From these examples, we generate 379 problem instances of a wide range

of sizes. Since there is currently no conic benchmark storage format that recognizes

more than a handful of cone types, we generate all instances on the fly using JuMP

or Hypatia’s native interface. All of Hypatia’s predefined cones are represented in

these instances, so we believe this is the most diverse conic benchmark set available.

On this benchmark set, we run five different stepping procedures: the basic SY-like

procedure (similar to Alfonso) and the sequence of four cumulative enhancements to

this procedure. Our results show that each enhancement tends to improve Hypatia’s

iteration count and solve time, with minimal impact on the number of instances

solved. We do not enforce time or iteration limits, but we note that under strict

limits the enhancements would greatly improve the number of instances solved. The

TOA enhancement alone leads to a particularly consistent improvement of around

45% for iteration counts. Overall, the enhancements together reduce the iterations

and solve time by more than 80% and 70% respectively. For instances that take more
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iterations or solve time, the enhancements tend to yield greater relative improvements

in these measures.

2.1.4 Chapter overview

In Section 2.2, we define exotic cones, LHSCBs, and our required cone oracles (in-

cluding the TOO). In Section 2.3, we describe Hypatia’s general primal-dual conic

form, associated conic certificates, and the HSDE. In Section 2.4, we define the central

path of the HSDE and central path proximity measures, and we outline Hypatia’s

high level algorithm. We also derive the prediction and centering directions and our

new TOA directions, and we describe the SY-like stepping procedure and our series

of four enhancements to this procedure. In Section 2.5, we briefly introduce Hypa-

tia’s predefined exotic cones and show that our TOO is relatively cheap to compute.

In Section 2.6, we discuss advanced procedures for preprocessing and initial point

finding, and solving structured linear systems for directions. In Section 2.7, we sum-

marize our applied examples and exotic conic benchmark instances, and finally we

present our computational results demonstrating the practical efficacy of our stepping

enhancements.

2.2 Exotic cones and oracles

Suppose we have tractable oracles for 𝒦 ⊂ R𝑞 and let 𝑓 : int(𝒦) → R denote the

𝜈-LHSCB for 𝒦. The oracles for 𝒦 that we require in this chapter are as follows.

Feasibility check. The strict feasibility oracle checks whether a given point 𝑠 ∈ R𝑞

satisfies 𝑠 ∈ int(𝒦).

Gradient and Hessian evaluations. Given a point 𝑠 ∈ int(𝒦), the gradient oracle

𝑔 and Hessian oracle 𝐻 evaluated at 𝑠 are:

𝑔(𝑠) := ∇𝑓(𝑠) ∈ R𝑞, (2.1a)

𝐻(𝑠) := ∇2𝑓(𝑠) ∈ S𝑞
≻. (2.1b)
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Third order directional derivative. Given a point 𝑠 ∈ int(𝒦) and a direction

𝛿𝑠 ∈ R𝑞, our new third order oracle (TOO), denoted T, is a rescaled third order

directional derivative vector:

T(𝑠, 𝛿𝑠) := −1
2
∇3𝑓(𝑠)[𝛿𝑠, 𝛿𝑠] ∈ R𝑞. (2.2)

Initial interior point. The initial interior point 𝑡 ∈ int(𝒦) is an arbitrary point in

the interior of 𝒦 (which is nonempty since 𝒦 is proper).

In Section 2.5, we introduce Hypatia’s predefined cones and discuss the time com-

plexity of computing the feasibility check, gradient, Hessian, and TOO oracles. Al-

though Hypatia’s generic cone interface allows specifying additional oracles that can

improve speed and numerical performance (e.g. a dual cone feasibility check, Hessian

product, and inverse Hessian product), these optional oracles are outside the scope

of this chapter.

For the initial interior point (which Hypatia only calls once, when finding an

initial iterate), we prefer to use the central point of 𝒦. This is the unique point

satisfying 𝑡 ∈ int(𝒦) ∩ int(𝒦*) and 𝑡 = −𝑔(𝑡) [Dahl and Andersen, 2021]. It can also

be characterized as the solution to the following strictly convex problem:

argmin𝑠∈int(𝒦)

(︀
𝑓(𝑠) + 1

2
‖𝑠‖2

)︀
. (2.3)

For the nonnegative cone 𝒦 = R≥, 𝑓(𝑠) = − log(𝑠) is an LHSCB with 𝜈 = 1, and we

have 𝑔(𝑠) = −𝑠−1 and the central point 𝑡 = 1 = −𝑔(1). For some of Hypatia’s cones,

we are not aware of a simple analytic expression for the central point, in which case

we typically use a non-central interior point.

2.3 General conic form and certificates

In Sections 2.3.1 and 2.3.2, we describe our general conic primal-dual form and the

associated conic certificates. In Section 2.3.3, we introduce the homogeneous self-dual
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embedding (HSDE) conic feasibility problem, a solution of which may provide a conic

certificate.

2.3.1 General conic form

Recall (1.1), which is Hypatia’s primal conic form:

inf𝑥 𝑐⊤𝑥 : (2.4a)

𝑏− 𝐴𝑥 = 0, (2.4b)

ℎ−𝐺𝑥 ∈ 𝒦, (2.4c)

where 𝑐 ∈ R𝑛, 𝑏 ∈ R𝑝, and ℎ ∈ R𝑞 are vectors, 𝐴 : R𝑛 → R𝑝 and 𝐺 : R𝑛 → R𝑞 are

linear maps, and 𝒦 ⊂ R𝑞 is a Cartesian product 𝒦 = 𝒦1 × · · · × 𝒦𝐾 of exotic cones.

For 𝑘 ∈ J𝐾K, we let 𝑞𝑘 = dim(𝒦𝑘), so
∑︀

𝑘∈J𝐾K 𝑞𝑘 = 𝑞 = dim(𝒦). Henceforth we use

𝑛, 𝑝, 𝑞 to denote respectively the variable, equality, and conic constraint dimensions

of a conic problem.

Once a proper cone 𝒦𝑘 is defined through Hypatia’s generic cone interface, both

𝒦𝑘 and 𝒦*
𝑘 may be used in any combination with other cones recognized by Hypatia

to construct the Cartesian product cone 𝒦 in (2.4c). The primal form (2.4) matches

CVXOPT’s form, however CVXOPT only recognizes symmetric cones [Vandenberghe,

2010]. Unlike the conic form used by Skajaa and Ye [2015], Papp and Yıldız [2021],

which recognizes conic constraints of the form 𝑥 ∈ 𝒦, our form does not require

introducing slack variables to represent a more general constraint ℎ−𝐺𝑥 ∈ 𝒦.

The conic dual problem of (2.4), over variables 𝑦 ∈ R𝑝 and 𝑧 ∈ R𝑞 associated with

(2.4b) and (2.4c), is:

sup𝑦,𝑧 −𝑏⊤𝑦 − ℎ⊤𝑧 : (2.5a)

𝑐+ 𝐴⊤𝑦 +𝐺⊤𝑧 = 0, (2.5b)

𝑧 ∈ 𝒦*, (2.5c)

where (2.5b) is associated with the primal variable 𝑥 ∈ R𝑛.
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2.3.2 Conic certificates

Under certain conditions, there exists a simple conic certificate providing an easily

verifiable proof of infeasibility of the primal (2.4) or dual (2.5) problem (via the conic

generalization of Farkas’ lemma) or optimality of a given primal-dual solution.

A primal improving ray 𝑥 is a feasible direction for the primal along which the

objective improves:

𝑐⊤𝑥 < 0, (2.6a)

−𝐴𝑥 = 0, (2.6b)

−𝐺𝑥 ∈ 𝒦, (2.6c)

and hence it certifies dual infeasibility.

A dual improving ray (𝑦, 𝑧) is a feasible direction for the dual along which the

objective improves:

−𝑏⊤𝑦 − ℎ⊤𝑧 > 0, (2.7a)

𝐴⊤𝑦 +𝐺⊤𝑧 = 0, (2.7b)

𝑧 ∈ 𝒦*, (2.7c)

and hence it certifies primal infeasibility.

A complementary solution (𝑥, 𝑦, 𝑧) satisfies the primal-dual feasibility conditions

(2.4b), (2.4c), (2.5b) and (2.5c), and has equal and attained primal and dual

objective values:

𝑐⊤𝑥 = −𝑏⊤𝑦 − ℎ⊤𝑧, (2.8)

and hence certifies optimality of (𝑥, 𝑦, 𝑧) via conic weak duality.

One of these certificates exists if neither the primal nor the dual is ill-posed. A

conic problem is ill-posed if a small perturbation of the problem data can change

the feasibility status of the problem or cause arbitrarily large perturbations to the
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optimal solution (see MOSEK ApS [2020, Section 7.2] and Permenter et al. [2017] for

more details).

2.3.3 Homogeneous self-dual embedding

The HSDE is a self-dual conic feasibility problem in variables 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑝, 𝑧 ∈

R𝑞, 𝜏 ∈ R, 𝑠 ∈ R𝑞, 𝜅 ∈ R (see Vandenberghe [2010, Section 6]), derived from a ho-

mogenization of the primal-dual optimality conditions (2.4b), (2.4c), (2.5b), (2.5c)

and (2.8):

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

𝑠

𝜅

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 𝐴⊤ 𝐺⊤ 𝑐

−𝐴 0 0 𝑏

−𝐺 0 0 ℎ

−𝑐⊤ −𝑏⊤ −ℎ⊤ 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑧

𝜏

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.9a)

(𝑧, 𝜏, 𝑠, 𝜅) ∈
(︀
𝒦* × R≥ ×𝒦 × R≥

)︀
. (2.9b)

For convenience we let 𝜔 := (𝑥, 𝑦, 𝑧, 𝜏, 𝑠, 𝜅) ∈ R𝑛+𝑝+2𝑞+2 represent a point. We define

the structured 4×6 block matrix 𝐸 ∈ R(𝑛+𝑝+𝑞+1)×dim(𝜔) such that (2.9a) is equivalent

to:

𝐸𝜔 = 0. (2.10)

Here we assume 𝐸 has full row rank; in Section 2.6 we discuss preprocessing techniques

that handle linearly dependent rows. Note that 𝜔 = 0 satisfies (2.9), so the HSDE

is always feasible. A point 𝜔 is an interior point if it is strictly feasible for the conic

constraints (2.9b), i.e. 𝜔 satisfies (𝑧, 𝜏, 𝑠, 𝜅) ∈ int
(︀
𝒦* × R≥ ×𝒦 × R≥

)︀
.

Suppose a point 𝜔 is feasible for the HSDE (2.9). From skew symmetry of the

square 4×4 block matrix in (2.9a), we have 𝑠⊤𝑧+𝜅𝜏 = 0. From the conic constraints

(2.9b) and the dual cone inequality (1.2) we have 𝑠⊤𝑧 ≥ 0 and 𝜅𝜏 ≥ 0. Hence

𝑠⊤𝑧 = 𝜅𝜏 = 0. We consider an exhaustive list of cases below.

Optimality. If 𝜏 > 0, 𝜅 = 0, then (𝑥, 𝑦, 𝑧)/𝜏 is a complementary solution satisfying

the primal-dual optimality conditions (2.4b), (2.4c), (2.5b), (2.5c) and (2.8).
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Infeasibility. If 𝜏 = 0, 𝜅 > 0, then 𝑐⊤𝑥 + 𝑏⊤𝑦 + ℎ⊤𝑧 < 0 and we consider two

sub-cases.

Of primal. If 𝑏⊤𝑦 + ℎ⊤𝑧 < 0, then (𝑦, 𝑧) is a primal infeasibility certificate

satisfying (2.7).

Of dual. If 𝑐⊤𝑥 < 0, then 𝑥 is a dual infeasibility certificate satisfying (2.6).

No information. If 𝜏 = 𝜅 = 0, then 𝜔 provides no information about the feasibility

or optimal values of the primal or dual.

Thus an HSDE solution 𝜔 satisfying 𝜅+ 𝜏 > 0 provides an optimality or infeasibility

certificate (see Skajaa and Ye [2015, Lemma 1] and Vandenberghe [2010, Section 6.1]).

If the primal and dual problems are both feasible and have zero duality gap, SY

finds an HSDE solution with 𝜏 > 0 (yielding a complementary solution), and if the

primal or dual (possibly both) is infeasible, SY finds an HSDE solution with 𝜅 > 0

(yielding an infeasibility certificate) [Skajaa and Ye, 2015, Section 2]. This implies

that if SY finds a solution with 𝜅 = 𝜏 = 0, then 𝜅 = 𝜏 = 0 for all solutions to

the HSDE; in this case, no complementary solution or improving ray exists, and the

primal or dual (possibly both) is ill-posed [Permenter et al., 2017]. The algorithm we

describe in Section 2.4 is an extension of SY that inherits these properties.

2.4 Central path following algorithm

In Section 2.4.1, we describe the central path of the HSDE, and in Section 2.4.2

we define central path proximity measures. In Section 2.4.3, we outline a high level

PDIPM that maintains iterates close to the central path, and we give numerical

convergence criteria for detecting approximate conic certificates. In Section 2.4.4,

we derive prediction and centering directions and our corresponding TOA directions

using the TOO. Finally in Section 2.4.5, we summarize an SY-like stepping procedure

and describe our sequence of four enhancements to this procedure.
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2.4.1 Central path of the HSDE

We define the HSDE in (2.9). Recall that 𝒦 in our primal conic form (2.4) is a

Cartesian product 𝒦 = 𝒦1 × · · · × 𝒦𝐾 of 𝐾 exotic cones. We partition the exotic

cone indices J𝐾K into two sets: 𝐾pr for cones with primal oracles (i.e. for 𝒦𝑘) and

𝐾du for cones with dual oracles (i.e. for 𝒦*
𝑘). For convenience, we append the 𝜏 and

𝜅 variables onto the 𝑠 and 𝑧 variables. Letting 𝐾̄ = 𝐾 + 1, we define for 𝑘 ∈ J𝐾̄K:

𝒦̄𝑘 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝒦𝑘 𝑘 ∈ 𝐾pr,

𝒦*
𝑘 𝑘 ∈ 𝐾du,

R≥ 𝑘 = 𝐾̄,

(2.11a)

(𝑧𝑘, 𝑠𝑘) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝑧𝑘, 𝑠𝑘) 𝑘 ∈ 𝐾pr,

(𝑠𝑘, 𝑧𝑘) 𝑘 ∈ 𝐾du,

(𝜅, 𝜏) 𝑘 = 𝐾̄.

(2.11b)

For a given initial interior point 𝜔0 = (𝑥0, 𝑦0, 𝑧0, 𝜏 0, 𝑠0, 𝜅0), the central path of

the HSDE is the trajectory of solutions 𝜔𝜇 = (𝑥𝜇, 𝑦𝜇, 𝑧𝜇, 𝜏𝜇, 𝑠𝜇, 𝜅𝜇), parameterized by

𝜇 > 0, satisfying:

𝐸𝜔𝜇 = 𝜇𝐸𝜔0, (2.12a)

𝑧𝜇,𝑘 + 𝜇𝑔𝑘(𝑠𝜇,𝑘) = 0 ∀𝑘 ∈ J𝐾̄K, (2.12b)

(𝑧𝜇, 𝑠𝜇) ∈ int(𝒦̄* × 𝒦̄). (2.12c)

When all exotic cones have primal oracles (i.e. 𝐾du is empty), our definition (2.12)

exactly matches the central path defined in Vandenberghe [2010, Equation 32], and

only differs from the definition in Skajaa and Ye [2015, Equations 7-8] in the affine

form (i.e. the variable names and affine constraint structure). Unlike SY, our central

path condition (2.12b) allows cones with dual oracles (𝐾du may be nonempty).
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To obtain an initial point 𝜔0, we first let:

(︀
𝑧0𝑘, 𝑠

0
𝑘

)︀
= (−𝑔𝑘(𝑡𝑘), 𝑡𝑘) ∀𝑘 ∈ J𝐾̄K, (2.13)

where 𝑡𝑘 ∈ int
(︀
𝒦̄𝑘

)︀
is the initial interior point oracle (note that 𝜏 0 = 𝜅0 = 1).

Although 𝑥0 and 𝑦0 can be chosen arbitrarily, we let 𝑥0 be the solution of:

min𝑥∈R𝑛 ‖𝑥‖ : (2.14a)

−𝐴𝑥+ 𝑏𝜏 0 = 0, (2.14b)

−𝐺𝑥+ ℎ𝜏 0 − 𝑠0 = 0, (2.14c)

and we let 𝑦0 be the solution of:

min𝑦∈R𝑝 ‖𝑦‖ : (2.15a)

𝐴⊤𝑦 +𝐺⊤𝑧0 + 𝑐𝜏 0 = 0. (2.15b)

In Section 2.6, we outline a QR-factorization-based procedure for preprocessing the

affine data of the conic model and solving for 𝜔0.

Like Skajaa and Ye [2015, Section 4.1], we define the complementarity gap func-

tion:

𝜇(𝜔) := 𝑠⊤𝑧/
∑︀

𝑘∈J𝐾̄K 𝜈𝑘, (2.16)

where 𝜈𝑘 is the LHSCB parameter of the LHSCB 𝑓𝑘 for 𝒦̄𝑘 (see (1.3b)). Note that

𝜇(𝜔) > 0 if (𝑧, 𝑠) ∈ int(𝒦̄*) × int(𝒦̄), by a strict version of the dual cone inequality

(1.2). From (2.13), 𝜇(𝜔0) = 1, since in (2.16) we have (𝑠0)⊤𝑧0 =
∑︀

𝑘∈J𝐾̄K 𝑡
⊤
𝑘 (−𝑔𝑘(𝑡𝑘)),

and 𝑡⊤𝑘 (−𝑔𝑘(𝑡𝑘)) = 𝜈𝑘 by logarithmic homogeneity of 𝑓𝑘 [Nesterov and Nemirovskii,

1994, Proposition 2.3.4]. Hence 𝜔0 satisfies the central path conditions (2.12) for

parameter value 𝜇 = 1. The central path is therefore a trajectory that starts at

𝜔0 with complementarity gap 𝜇 = 1 and approaches a solution for the HSDE as 𝜇

decreases to zero.
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2.4.2 Central path proximity

Given a point 𝜔, we define the central path proximity 𝜋𝑘 for exotic cone 𝑘 ∈ J𝐾̄K as:

𝜋𝑘(𝜔) :=

⎧⎪⎨⎪⎩
⃦⃦
(𝐻𝑘(𝑠𝑘))

−1/2(𝑧𝑘/𝜇(𝜔) + 𝑔𝑘(𝑠𝑘))
⃦⃦

if 𝜇(𝜔) > 0, 𝑠𝑘 ∈ int
(︀
𝒦̄𝑘

)︀
,

∞ otherwise.
(2.17)

Hence 𝜋𝑘 is a measure of the distance from 𝑠𝑘 and 𝑧𝑘 to the surface defined by the

central path condition (2.12b) (compare to Skajaa and Ye [2015, Equation 9] and

Nesterov and Todd [1998, Section 4]).

In Lemma 2.4.1, we show that for exotic cone 𝑘 ∈ J𝐾̄K, if 𝜋𝑘(𝜔) < 1, then

𝑠𝑘 ∈ int
(︀
𝒦̄𝑘

)︀
and 𝑧𝑘 ∈ int

(︀
𝒦̄*

𝑘

)︀
. This condition is sufficient but not necessary for

strict cone feasibility. If it holds for all 𝑘 ∈ J𝐾̄K, then 𝜔 is an interior point (by

definition) and (2.12c) is satisfied. From (2.17), 𝜋𝑘(𝜔) can be computed by evaluating

the feasibility check, gradient, and Hessian oracles for 𝒦̄𝑘 at 𝑠𝑘.

Lemma 2.4.1. Given a point 𝜔, for each 𝑘 ∈ J𝐾̄K, 𝜋𝑘(𝜔) < 1 implies 𝑠𝑘 ∈ int
(︀
𝒦̄𝑘

)︀
and 𝑧𝑘 ∈ int

(︀
𝒦̄*

𝑘

)︀
.

Proof. We adapt Papp and Yıldız [2017, Lemma 15]. Fix 𝜇 = 𝜇(𝜔) for convenience,

and suppose 𝜋𝑘(𝜔) < 1 for exotic cone 𝑘 ∈ J𝐾̄K. Then by (2.17), 𝜇 > 0 and 𝑠𝑘 ∈

int
(︀
𝒦̄𝑘

)︀
. By Papp and Yıldız [2017, Theorem 8], 𝑠𝑘 ∈ int

(︀
𝒦̄𝑘

)︀
implies −𝑔𝑘(𝑠𝑘) ∈

int
(︀
𝒦̄*

𝑘

)︀
. Let 𝑓𝑘 be the LHSCB for 𝒦̄𝑘, and let 𝐻*

𝑘 := ∇2𝑓 *
𝑘 denote the Hessian

operator for the conjugate 𝑓 *
𝑘 (see (1.4)) of 𝑓𝑘. By Papp and Yıldız [2017, Equation

13], 𝐻*
𝑘(−𝑔𝑘(𝑠𝑘)) = (𝐻𝑘(𝑠𝑘))

−1, so:

⃦⃦
(𝐻*

𝑘(−𝑔𝑘(𝑠𝑘)))1/2(𝑧𝑘/𝜇+ 𝑔𝑘(𝑠𝑘))
⃦⃦

(2.18a)

=
⃦⃦
(𝐻𝑘(𝑠𝑘))

−1/2(𝑧𝑘/𝜇+ 𝑔𝑘(𝑠𝑘))
⃦⃦

(2.18b)

= 𝜋𝑘(𝜔) < 1. (2.18c)

So by Papp and Yıldız [2017, Definition 1], 𝑧𝑘/𝜇 ∈ int
(︀
𝒦̄*

𝑘

)︀
, hence 𝑧𝑘 ∈ int

(︀
𝒦̄*

𝑘

)︀
.

We now define a proximity function that aggregates the exotic cone central path
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proximity values 𝜋𝑘(𝜔) ≥ 0, ∀𝑘 ∈ J𝐾̄K. SY aggregates by taking the ℓ2 norm:

𝜋ℓ2(𝜔) :=
⃦⃦
(𝜋𝑘(𝜔))𝑘∈J𝐾̄K

⃦⃦
. (2.19)

An alternative aggregated proximity uses the ℓ∞ norm (maximum):

𝜋ℓ∞(𝜔) :=
⃦⃦
(𝜋𝑘(𝜔))𝑘∈J𝐾̄K

⃦⃦
∞. (2.20)

Clearly, 0 ≤ 𝜋𝑘(𝜔) ≤ 𝜋ℓ∞(𝜔) ≤ 𝜋ℓ2(𝜔),∀𝑘 ∈ J𝐾̄K. Both conditions 𝜋ℓ2(𝜔) < 1 and

𝜋ℓ∞(𝜔) < 1 guarantee by Lemma 2.4.1 that 𝜔 is an interior point, however using 𝜋ℓ2

leads to a more restrictive condition on 𝜔.

2.4.3 High level algorithm

We describe a high level algorithm for approximately solving the HSDE. The method

starts at the initial interior point 𝜔0 with complementarity gap 𝜇(𝜔0) = 1 and approxi-

mately tracks the central path trajectory (2.12) through a series of iterations. It main-

tains feasibility for the linear equality conditions (2.12a) and strict cone feasibility con-

ditions (2.12c), but allows violation of the nonlinear equality conditions (2.12b). On

the 𝑖th iteration, the current interior point is 𝜔𝑖−1 satisfying 𝜋𝑘(𝜔
𝑖−1) < 1,∀𝑘 ∈ J𝐾̄K,

and the complementarity gap is 𝜇(𝜔𝑖−1). The method searches for a new point 𝜔𝑖

that maintains the proximity condition 𝜋𝑘(𝜔
𝑖) < 1, ∀𝑘 ∈ J𝐾̄K (and hence is an interior

point) and either has a smaller complementarity gap 𝜇(𝜔𝑖) < 𝜇(𝜔𝑖−1) or a smaller

aggregate proximity value 𝜋(𝜔𝑖) < 𝜋(𝜔𝑖−1) (where 𝜋 is 𝜋ℓ2 or 𝜋ℓ∞), or both. As

the complementarity gap decreases towards zero, the RHS of (2.12a) approaches the

origin, so the iterates approach a solution of the HSDE (2.9).

To detect an approximate conic certificate and terminate the iterations, we check

if the current iterate 𝜔 satisfies any of the following numerical convergence criteria.

These conditions use positive tolerance values for feasibility 𝜀𝑓 , infeasibility 𝜀𝑖, abso-

lute gap 𝜀𝑎, relative gap 𝜀𝑟, and ill-posedness 𝜀𝑝 (see Section 2.7.2 for the tolerance

values we use in computational testing).
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Optimality. We terminate with a complementary solution (𝑥, 𝑦, 𝑧)/𝜏 approximately

satisfying the primal-dual optimality conditions (2.4b), (2.4c), (2.5b), (2.5c)

and (2.8) if:

max

(︂
‖𝐴⊤𝑦 +𝐺⊤𝑧 + 𝑐𝜏‖∞

1 + ‖𝑐‖∞
,
‖−𝐴𝑥+ 𝑏𝜏‖∞

1 + ‖𝑏‖∞
,
‖−𝐺𝑥+ ℎ𝜏 − 𝑠‖∞

1 + ‖ℎ‖∞

)︂
≤ 𝜀𝑓𝜏,

(2.21a)

and at least one of the following two conditions holds:

𝑠⊤𝑧 ≤ 𝜀𝑎, (2.21b)

min(𝑠⊤𝑧/𝜏, |𝑐⊤𝑥+ 𝑏⊤𝑦 + ℎ⊤𝑧|) ≤ 𝜀𝑟 max(𝜏,min(|𝑐⊤𝑥|, |𝑏⊤𝑦 + ℎ⊤𝑧|)). (2.21c)

Note that (2.21b) and (2.21c) are absolute and relative optimality gap condi-

tions respectively.

Primal infeasibility. We terminate with a dual improving ray (𝑦, 𝑧) approximately

satisfying (2.7) if:

𝑏⊤𝑦 + ℎ⊤𝑧 < 0, ‖𝐴⊤𝑦 +𝐺⊤𝑧‖∞ ≤ −𝜀𝑖(𝑏⊤𝑦 + ℎ⊤𝑧). (2.22)

Dual infeasibility. We terminate with a primal improving ray 𝑥 approximately sat-

isfying (2.6) if:

𝑐⊤𝑥 < 0, max(‖𝐴𝑥‖∞, ‖𝐺𝑥+ 𝑠‖∞) ≤ −𝜀𝑖𝑐⊤𝑥. (2.23)

Ill-posed primal or dual. If 𝜏 and 𝜅 are approximately 0, the primal and dual

problem statuses cannot be determined (see Section 2.3.3). We terminate with

an ill-posed status if:

𝜇(𝜔) ≤ 𝜀𝑝, 𝜏 ≤ 𝜀𝑝 min(1, 𝜅). (2.24)

The high level path following algorithm below computes an approximate solution
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to the HSDE. In Section 2.4.5, we describe specific stepping procedures for Line 5.

1: procedure SolveHSDE

2: compute initial interior point 𝜔0

3: 𝑖← 1

4: while 𝜔𝑖−1 does not satisfy any of the convergence conditions (2.21) to (2.24)

do

5: 𝜔𝑖 ← Step(𝜔𝑖−1)

6: 𝑖← 𝑖+ 1

7: end while

8: return 𝜔𝑖

9: end procedure

2.4.4 Search directions

At a given iteration of the path following method, let 𝜔 be the current interior point

and fix 𝜇 = 𝜇(𝜔) for convenience. The stepping procedures we describe in Sec-

tion 2.4.5 first compute one or more search directions, which depend on 𝜔. We derive

the centering direction in Section 2.4.4 and the prediction direction in Section 2.4.4.

The goal of centering is to step to a point with a smaller aggregate central path

proximity than the current point, i.e. to step towards the central path. The goal

of prediction is to step to a point with a smaller complementarity gap, i.e. to step

closer to a solution of the HSDE. The centering and prediction directions match those

used by SY. We associate with each of these directions a new third order adjustment

(TOA) direction, which depends on the TOO and helps to correct the corresponding

unadjusted direction (which must be computed before the TOA direction). Hence we

derive four types of directions here.

Each direction is computed as the solution to a linear system with a structured

square 6 × 6 block matrix left hand side (LHS) and a particular right hand side

(RHS) vector. The LHS, which depends only on 𝜔 and the problem data, is the same

for all four directions at a given iteration. We let 𝑟 := (𝑟𝐸, 𝑟1, . . . , 𝑟𝐾̄) ∈ Rdim(𝜔)
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represent an RHS, where 𝑟𝐸 ∈ R𝑛+𝑝+𝑞+1 corresponds to the linear equalities (2.12a)

and 𝑟𝑘 ∈ R𝑞𝑘 ,∀𝑘 ∈ J𝐾̄K corresponds to the nonlinear equalities (2.12b). The direction

𝛿 := (𝛿𝑥, 𝛿𝑦, 𝛿𝑧, 𝛿𝜏 , 𝛿𝑠, 𝛿𝜅) ∈ Rdim(𝜔) corresponding to 𝑟 is the solution to:

𝐸𝛿 = 𝑟𝐸, (2.25a)

𝛿𝑧,𝑘 + 𝜇𝐻𝑘(𝑠𝑘)𝛿𝑠,𝑘 = 𝑟𝑘 ∀𝑘 ∈ J𝐾̄K. (2.25b)

Since 𝐸 is assumed to have full row rank and each 𝐻𝑘 is positive definite, this square

system is nonsingular and hence has a unique solution. In Section 2.6, we describe a

particular method for solving (2.25).

Centering

The centering direction 𝛿𝑐 is analogous to the definition of Skajaa and Ye [2015,

Section 3.2]. It reduces the violation on the central path nonlinear equality condition

(2.12b) (and can be interpreted as a Newton step), while keeping the complementarity

gap 𝜇 (approximately) constant. We denote the centering TOA direction 𝛿𝑐𝑡. To

maintain feasibility for the linear equality condition (2.12a), we ensure 𝐸𝛿𝑐 = 𝐸𝛿𝑐𝑡 = 0

in (2.25a).

Dropping the index 𝑘 ∈ J𝐾̄K for conciseness, recall that (2.12b) expresses 𝑧 +

𝜇𝑔(𝑠) = 0. A first order approximation of this condition gives:

𝑧 + 𝛿𝑧 + 𝜇(𝑔(𝑠) +𝐻(𝑠)𝛿𝑠) = 0 (2.26a)

⇒ 𝛿𝑧 + 𝜇𝐻(𝑠)𝛿𝑠 = −𝑧 − 𝜇𝑔(𝑠), (2.26b)

which matches the form of (2.25b). Hence we let the centering direction 𝛿𝑐 be the

solution to:

𝐸𝛿 = 0, (2.27a)

𝛿𝑧,𝑘 + 𝜇𝐻𝑘(𝑠𝑘)𝛿𝑠,𝑘 = −𝑧𝑘 − 𝜇𝑔𝑘(𝑠𝑘) ∀𝑘 ∈ J𝐾̄K. (2.27b)
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Similarly, a second order approximation of 𝑧 + 𝜇𝑔(𝑠) = 0 gives:

𝑧 + 𝛿𝑧 + 𝜇
(︀
𝑔(𝑠) +𝐻(𝑠)𝛿𝑠 +

1
2
∇3𝑓(𝑠)[𝛿𝑠, 𝛿𝑠]

)︀
= 0 (2.28a)

⇒ 𝛿𝑧 + 𝜇𝐻(𝑠)𝛿𝑠 = −𝑧 − 𝜇𝑔(𝑠) + 𝜇T(𝑠, 𝛿𝑠), (2.28b)

where (2.28b) uses the definition of the TOO in (2.2). Note that the RHSs of (2.26b)

and (2.28b) differ only by 𝜇T(𝑠, 𝛿𝑠), which depends on 𝛿𝑠. To remove this dependency,

we substitute the centering direction 𝛿𝑐, which we assume is already computed, into

the RHS of (2.28b). Hence we let the centering TOA direction 𝛿𝑐𝑡, which adjusts the

centering direction, be the solution to:

𝐸𝛿 = 0, (2.29a)

𝛿𝑧,𝑘 + 𝜇𝐻𝑘(𝑠𝑘)𝛿𝑠,𝑘 = 𝜇T𝑘

(︀
𝑠𝑘, 𝛿

𝑐
𝑠,𝑘

)︀
∀𝑘 ∈ J𝐾̄K. (2.29b)

We note that for a rescaling factor 𝛼 ∈ (0, 1), the TOA direction corresponding to

𝛼𝛿𝑐 (a rescaling of the centering direction) is 𝛼2𝛿𝑐𝑡 (a rescaling of the centering TOA

direction).

Prediction

The prediction direction 𝛿𝑝 reduces the complementarity gap and is analogous to the

definition of Skajaa and Ye [2015, Section 3.1]. We derive 𝛿𝑝 and its corresponding

TOA direction 𝛿𝑝𝑡 by considering the central path conditions (2.12) as a dynamical

system parametrized by 𝜇 > 0, and differentiating the linear and nonlinear equalities

(2.12a) and (2.12b).

Differentiating (2.12a) once gives:

𝐸𝜔̇𝜇 = 𝐸𝜔0. (2.30)

Rescaling (2.30) by −𝜇 and substituting (2.12a) gives:

𝐸(−𝜇𝜔̇𝜇) = −𝜇𝐸𝜔0 = −𝐸𝜔𝜇. (2.31)
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Dropping the index 𝑘 ∈ J𝐾̄K for conciseness, we differentiate 𝑧𝜇 + 𝜇𝑔(𝑠𝜇) = 0 from

(2.12b) once to get:

˙̄𝑧𝜇 + 𝑔(𝑠𝜇) + 𝜇𝐻(𝑠𝜇) ˙̄𝑠𝜇 = 0. (2.32)

Rescaling (2.32) by −𝜇 and substituting 𝑧𝜇 = −𝜇𝑔(𝑠𝜇) from (2.12b) gives:

−𝜇 ˙̄𝑧𝜇 + 𝜇𝐻(𝑠𝜇)(−𝜇 ˙̄𝑠𝜇) = −𝑧𝜇. (2.33)

The direction 𝜔̇𝜇 is tangent to the central path. Like SY, we interpret the prediction

direction as 𝛿𝑝 = −𝜇𝜔̇𝜇, so (2.31) and (2.33) become:

𝐸𝛿𝑝 = −𝐸𝜔𝜇, (2.34a)

𝛿𝑝𝑧 + 𝜇𝐻(𝑠𝜇)𝛿
𝑝
𝑠 = −𝑧𝜇, (2.34b)

which matches the form (2.25). So we let 𝛿𝑝 be the solution to:

𝐸𝛿 = −𝐸𝜔, (2.35a)

𝛿𝑧,𝑘 + 𝜇𝐻𝑘(𝑠𝑘)𝛿𝑠,𝑘 = −𝑧𝑘 ∀𝑘 ∈ J𝐾̄K. (2.35b)

Differentiating (2.12a) twice and rescaling by 1
2
𝜇2 gives:

𝐸
(︀
1
2
𝜇2𝜔̈𝜇

)︀
= 0. (2.36)

Differentiating 𝑧𝜇 + 𝜇𝑔(𝑠𝜇) = 0 twice gives:

¨̄𝑧𝜇 + 2𝐻(𝑠𝜇) ˙̄𝑠𝜇 + 𝜇∇3𝑓(𝑠𝜇)[ ˙̄𝑠𝜇, ˙̄𝑠𝜇] + 𝜇𝐻(𝑠𝜇)¨̄𝑠𝜇 = 0. (2.37)

Rescaling (2.37) by 1
2
𝜇2 and substituting the TOO definition (2.2), we have:

1
2
𝜇2 ¨̄𝑧𝜇 + 𝜇𝐻(𝑠𝜇)

(︀
1
2
𝜇2 ¨̄𝑠𝜇

)︀
= 𝜇𝐻(𝑠𝜇)(−𝜇 ˙̄𝑠𝜇)− 1

2
𝜇∇3𝑓(𝑠𝜇)[−𝜇 ˙̄𝑠𝜇,−𝜇 ˙̄𝑠𝜇] (2.38a)

= 𝜇𝐻(𝑠𝜇)(−𝜇 ˙̄𝑠𝜇) + 𝜇T(𝑠𝜇,−𝜇 ˙̄𝑠𝜇). (2.38b)
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We interpret the prediction TOA direction, which adjusts the prediction direction,

as 𝛿𝑝𝑡 = 1
2
𝜇2𝜔̈. The RHS of (2.38b) depends on ˙̄𝑠𝜇, so we remove this dependency

by substituting the prediction direction 𝛿𝑝 = −𝜇𝜔̇𝜇, which we assume is already

computed. Hence using (2.36) and (2.38b), we let 𝛿𝑝𝑡 be the solution to:

𝐸𝛿 = 0, (2.39a)

𝛿𝑧,𝑘 + 𝜇𝐻𝑘(𝑠𝑘)𝛿𝑠,𝑘 = 𝜇𝐻𝑘(𝑠𝑘)𝛿
𝑝
𝑠,𝑘 + 𝜇T𝑘

(︀
𝑠𝑘, 𝛿

𝑝
𝑠,𝑘

)︀
∀𝑘 ∈ J𝐾̄K. (2.39b)

We note that the RHS in (2.39b) differs from the ‘higher order corrector’ RHS of

Dahl and Andersen [2021, (16)], which has the form 1
2
∇3𝑓𝑘

[︀
𝛿𝑝𝑠,𝑘, (𝐻𝑘(𝑠𝑘))

−1𝛿𝑝𝑧,𝑘
]︀
.

2.4.5 Stepping procedures

A stepping procedure computes one or more directions from Section 2.4.4 and uses

the directions to search for a new interior point. Recall from Line 5 of the high level

PDIPM in Section 2.4.3 that on iteration 𝑖 with current iterate 𝜔𝑖−1, Step computes

𝜔𝑖 satisfying 𝜋(𝜔𝑖) < 1 and either 𝜇(𝜔𝑖) < 𝜇(𝜔𝑖−1) (prediction) or 𝜋(𝜔𝑖) < 𝜋(𝜔𝑖−1)

(centering) or both. In Section 2.4.5, we describe a stepping procedure similar to that

of Alfonso [Papp and Yıldız, 2021], which is a practical implementation of SY. This

procedure, which we call basic, alternates between prediction and centering steps and

does not use the TOA directions. In Sections 2.4.5 to 2.4.5, we describe a sequence

of four cumulative enhancements to the basic procedure, with the goal of improving

iteration counts and per-iteration computational efficiency in practice. The main

purpose of our computational testing in Section 2.7 is to assess the value of these

enhancements on a diverse set of benchmark instances.

Basic stepping procedure

First, we decide whether to perform a centering step or a prediction step. If the

current iterate 𝜔𝑖−1 (at the 𝑖th iteration) is very close to the central path, i.e. if the

sum proximity (2.19) does not exceed 𝜂 = 0.0332 (from Alfonso [Papp and Yıldız,

2020]), or if the most recent 𝑁 = 4 steps have all been centering steps, then we
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compute the prediction direction 𝛿𝑝 from (2.35). Otherwise, we compute the centering

direction 𝛿𝑐 from (2.27). Letting 𝑗 be the number of consecutive centering steps taken

immediately before the current 𝑖th iteration, the search direction is:

𝛿 :=

⎧⎪⎨⎪⎩𝛿𝑝 if 𝜋ℓ2(𝜔
𝑖−1) ≤ 𝜂 or 𝑗 ≥ 𝑁,

𝛿𝑐 otherwise.
(2.40)

Next, we perform a backtracking line search in the direction 𝛿. The search finds a

step length 𝛼̂ ∈ (0, 1) from a fixed schedule of decreasing values 𝒜 = {𝛼𝑙}𝑙∈J𝐿K, where

𝐿 = 18, 𝛼1 = 0.9999, and 𝛼𝐿 = 0.0005. The next iterate 𝜔𝑖 = 𝜔𝑖−1 + 𝛼̂𝛿 becomes the

first point in the backtracking line search that satisfies 𝜋ℓ2(𝜔
𝑖) ≤ 𝛽1 for 𝛽1 = 0.2844

(from Alfonso [Papp and Yıldız, 2020]), which guarantees interiority by Lemma 2.4.1.

If the backtracking search terminates without a step length satisfying the proximity

condition (i.e. 𝛼𝐿 is too large), the PDIPM algorithm terminates without a solution.

The basic stepping procedure is summarized as follows. Note the centering step

count 𝑗 is initialized to zero before the first iteration 𝑖 = 1. Since 𝜔0 is exactly on the

central path (i.e. the proximity is zero), the first iteration uses a prediction step.

1: procedure BasicStep(𝜔𝑖−1, 𝑗)

2: if 𝜋ℓ2(𝜔
𝑖−1) ≤ 𝜂 or 𝑗 ≥ 𝑁 then ◁ choose predict or center

3: 𝛿 ← 𝛿𝑝 from (2.35) ◁ compute prediction direction

4: 𝑗 ← 0

5: else

6: 𝛿 ← 𝛿𝑐 from (2.27) ◁ compute centering direction

7: 𝑗 ← 𝑗 + 1

8: end if

9: 𝛼̂← max{𝛼 ∈ 𝒜 : 𝜋ℓ2(𝜔
𝑖−1 + 𝛼𝛿) ≤ 𝛽1

}︀
◁ compute step length by

backtracking search

10: 𝜔𝑖 ← 𝜔𝑖−1 + 𝛼̂𝛿 ◁ update current iterate

11: end procedure
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Less restrictive proximity

The basic stepping procedure in Section 2.4.5 requires iterates to remain in close

proximity to the central path and usually only takes prediction steps from iterates

that are very close to the central path. Although conservative proximity conditions are

used to prove polynomial iteration complexity in Papp and Yıldız [2017], they may be

too restrictive from the perspective of practical performance. To allow prediction steps

from a larger neighborhood of the central path, we use the 𝜋ℓ∞ proximity measure

from (2.20) instead of 𝜋ℓ2 to compute the proximity of 𝜔𝑖−1, though we do not change

the proximity bound 𝜂. To allow longer step lengths, we also use 𝜋ℓ∞ instead of 𝜋ℓ2

for the backtracking search proximity checks, and we increase this proximity bound

to 𝛽2 = 0.99 (by Lemma 2.4.1, 𝛽2 < 1 guarantees interiority).

The prox stepping procedure, which enhances the basic stepping procedure by

relaxing the proximity conditions somewhat, is summarized as follows.

1: procedure ProxStep(𝜔𝑖−1, 𝑗)

2: if 𝜋ℓ∞(𝜔𝑖−1) ≤ 𝜂 or 𝑗 ≥ 𝑁 then ◁ use less restrictive proximity measure 𝜋ℓ∞

3: 𝛿 ← 𝛿𝑝 from (2.35)

4: 𝑗 ← 0

5: else

6: 𝛿 ← 𝛿𝑐 from (2.27)

7: 𝑗 ← 𝑗 + 1

8: end if

9: 𝛼̂← max{𝛼 ∈ 𝒜 : 𝜋ℓ∞(𝜔𝑖−1 + 𝛼𝛿) ≤ 𝛽2} ◁ use 𝜋ℓ∞ and larger proximity

bound 𝛽2

10: 𝜔𝑖 ← 𝜔𝑖−1 + 𝛼̂𝛿

11: end procedure

Third order adjustments

We modify the prox stepping procedure in Section 2.4.5 to incorporate the new TOA

directions associated with the prediction and centering directions. After deciding
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whether to predict or center (using the same criteria as prox ), we compute the unad-

justed direction 𝛿𝑢 (i.e. 𝛿𝑝 or 𝛿𝑐) and its associated TOA direction 𝛿𝑡 (i.e. 𝛿𝑝𝑡 or 𝛿𝑐𝑡).

We perform a backtracking line search in direction 𝛿𝑢, just like prox, and we use this

step length 𝛼̂𝑢 ∈ (0, 1) to scale down the TOA direction. We let the final direction be

𝛿𝑢 + 𝛼̂𝑢𝛿𝑡. The rescaling of 𝛿𝑡 helps to prevent over-adjustment. Finally, we perform

a second backtracking line search, using the same techniques and proximity condition

as the first line search.

The TOA stepping procedure, which enhances the prox stepping procedure by

incorporating the TOA directions, is summarized as follows.

1: procedure TOAStep(𝜔𝑖−1, 𝑗)

2: if 𝜋ℓ∞(𝜔𝑖−1) ≤ 𝜂 or 𝑗 ≥ 𝑁 then

3: 𝛿𝑢 ← 𝛿𝑝 from (2.35)

4: 𝛿𝑡 ← 𝛿𝑝𝑡 from (2.39) ◁ compute prediction TOA direction

5: 𝑗 ← 0

6: else

7: 𝛿𝑢 ← 𝛿𝑐 from (2.27)

8: 𝛿𝑡 ← 𝛿𝑐𝑡 from (2.29) ◁ compute centering TOA direction

9: 𝑗 ← 𝑗 + 1

10: end if

11: 𝛼̂𝑢 ← max{𝛼 ∈ 𝒜 : 𝜋ℓ∞(𝜔𝑖−1 + 𝛼𝛿𝑢) ≤ 𝛽2} ◁ perform line search for

unadjusted direction

12: 𝛿 ← 𝛿𝑢 + 𝛼̂𝑢𝛿𝑡 ◁ compute final direction

13: 𝛼̂← max{𝛼 ∈ 𝒜 : 𝜋ℓ∞(𝜔𝑖−1 + 𝛼𝛿) ≤ 𝛽2}

14: 𝜔𝑖 ← 𝜔𝑖−1 + 𝛼̂𝛿

15: end procedure

Curve search

The TOA stepping procedure in Section 2.4.5 performs two backtracking line searches,

which can be quite expensive. We propose using a single backtracking search along a

curve that is quadratic in the step parameter 𝛼 and linear in the unadjusted and TOA
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directions. Recall from Line 12 of the TOA procedure that we compute a direction 𝛿

as a linear function of the step parameter from the first line search. Substituting this 𝛿

function into the usual linear trajectory gives the curved trajectory 𝜔𝑖−1+𝛼(𝛿𝑢+𝛼𝛿𝑡)

for 𝛼 ∈ (0, 1), where 𝛿𝑢 and 𝛿𝑡 are the unadjusted and TOA directions (as in the

TOA procedure). Intuitively, a backtracking search along this curve achieves a more

dynamic rescaling of the TOA direction.

The curve stepping procedure, which enhances the TOA stepping procedure by

using a search on a curve instead of two line searches, is summarized as follows.

1: procedure CurveStep(𝜔𝑖−1, 𝑗)

2: if 𝜋ℓ∞(𝜔𝑖−1) ≤ 𝜂 or 𝑗 ≥ 𝑁 then

3: 𝛿𝑢 ← 𝛿𝑝 from (2.35)

4: 𝛿𝑡 ← 𝛿𝑝𝑡 from (2.39)

5: 𝑗 ← 0

6: else

7: 𝛿𝑢 ← 𝛿𝑐 from (2.27)

8: 𝛿𝑡 ← 𝛿𝑐𝑡 from (2.29)

9: 𝑗 ← 𝑗 + 1

10: end if

11: let 𝜔̂(𝛼) := 𝜔𝑖−1 + 𝛼(𝛿𝑢 + 𝛼𝛿𝑡) ◁ use curved trajectory

12: 𝛼̂← max{𝛼 ∈ 𝒜 : 𝜋ℓ∞(𝜔̂(𝛼)) ≤ 𝛽2}

13: 𝜔𝑖 ← 𝜔̂(𝛼̂)

14: end procedure

Combined directions

Unlike Skajaa and Ye [2015], Papp and Yıldız [2021], most conic PDIPMs combine

the prediction and centering phases (e.g. Vandenberghe [2010], Dahl and Andersen

[2021]). We propose using a single search on a curve that is quadratic in the step

parameter 𝛼 and linear in all four directions 𝛿𝑐, 𝛿𝑐𝑡, 𝛿𝑝, 𝛿𝑝𝑡 from Section 2.4.5. Intu-

itively, we can step further in a convex combination of the prediction and centering

directions than we can in just the prediction direction. In practice, a step length of
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one is usually ideal for the centering phase, so we can imagine performing a back-

tracking search from the point obtained from a pure prediction step (with step length

one) towards the point obtained from a pure centering step, terminating when we are

close enough to the centering point to satisfy the proximity condition. This approach

fundamentally differs from the previous procedures we have described because the

search trajectory does not finish at the current iterate 𝜔𝑖−1. If 𝜔̂𝑝(𝛼) and 𝜔̂𝑐(𝛼) are

the prediction and centering curve search trajectories from Line 11 of the curve pro-

cedure, then we define the combined trajectory as 𝜔̂(𝛼) = 𝜔̂𝑝(𝛼) + 𝜔̂𝑐(1 − 𝛼). Note

that 𝛼 = 1 corresponds to a full step in the adjusted prediction direction 𝛿𝑝+𝛿𝑝𝑡, and

𝛼 = 0 corresponds to a full step in the adjusted centering direction 𝛿𝑐 + 𝛿𝑐𝑡.

The comb stepping procedure, which enhances the curve stepping procedure by

combining the prediction and centering phases, is summarized as follows. Note that

unlike the previous procedures, there is no parameter 𝑗 counting consecutive centering

steps. Occasionally in practice, the backtracking search on Line 4 below fails to find

a positive step value, in which case we perform a centering step according to Lines 11

to 13 of the curve procedure.

1: procedure CombStep(𝜔𝑖−1)

2: compute 𝛿𝑐, 𝛿𝑐𝑡, 𝛿𝑝, 𝛿𝑝𝑡 from (2.27), (2.29), (2.35) and (2.39) ◁ use four

directions instead of two

3: let 𝜔̂(𝛼) := 𝜔𝑖−1 + 𝛼(𝛿𝑝 + 𝛼𝛿𝑝𝑡) + (1− 𝛼)(𝛿𝑐 + (1− 𝛼)𝛿𝑐𝑡) ◁ use combined

trajectory

4: 𝛼̂← max{𝛼 ∈ 𝒜 : 𝜋ℓ∞(𝜔̂(𝛼)) ≤ 𝛽2}

5: 𝜔𝑖 ← 𝜔̂(𝛼̂)

6: end procedure

2.5 Oracles for predefined exotic cones

Below we list 23 exotic cone types that we have predefined through Hypatia’s generic

cone interface (see Section 2.2). Each of these cones is represented in the benchmark

set of conic instances that we introduce in Section 2.7.1. Recall that we write any
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exotic cone 𝒦 in vectorized form, i.e. as a subset of R𝑞, where 𝑞 = dim(𝒦) ≥ 1 is

the cone dimension. For cones typically defined using symmetric matrices, we use

the standard svec vectorization (see Section 1.3) to ensure the vectorized cone is

proper, to preserve inner products, and to simplify the dual cone definition. Each

cone is parametrized by at least one dimension and several cones have additional

parameters such as numerical data. For convenience, we drop these parameters from

the symbols we use to represent cone types. For several cones, we have implemented

additional variants over complex numbers (for example, a Hermitian PSD cone), but

we omit these definitions here for simplicity. We defer a more complete description of

Hypatia’s exotic cones and LHSCBs to Coey et al. [2021b,a], Kapelevich et al. [2021].

Nonnegative cone. 𝒦≥ := R𝑑
≥ is the (self-dual) nonnegative real vectors (note for

𝑑 > 1, 𝒦≥ is not a primitive cone).

PSD cone. 𝒦⪰ :=
{︀
𝑤 ∈ Rsd(𝑑) : mat(𝑤) ∈ S𝑑

⪰
}︀

is the (self-dual) PSD matrices of

side dimension 𝑑.

Doubly nonnegative cone. 𝒦DNN := 𝒦≥ ∩ 𝒦⪰ is the PSD matrices with all non-

negative entries of side dimension 𝑑.

Sparse PSD cone. 𝒦sPSD is the PSD matrices of side dimension 𝑠 with a fixed

sparsity pattern 𝒮 containing 𝑑 ≥ 𝑠 nonzeros (including all diagonal elements);

see Section 4.4. The dual cone 𝒦*
sPSD is the symmetric matrices with pattern 𝒮

for which there exists a PSD completion, i.e. an assignment of the elements not

in 𝒮 such that the full matrix is PSD. For simplicity, the complexity estimates

in Table 2.1 assume the nonzeros are grouped under 𝐽 ≥ 1 supernodes, each

containing at most 𝑙 nodes, and the monotone degree of each node is no greater

than a constant 𝐷 [Andersen et al., 2013].

Linear matrix inequality cone. 𝒦LMI :=
{︀
𝑤 ∈ R𝑑 :

∑︀
𝑖∈J𝑑K 𝑤𝑖𝑃𝑖 ∈ S𝑠

⪰
}︀

are the

vectors for which the matrix pencil of 𝑑 matrices 𝑃𝑖 ∈ S𝑠,∀𝑖 ∈ J𝑑K is PSD. We

assume 𝑃1 ≻ 0 so that we can use the initial interior point 𝑒1.
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Infinity norm cone. 𝒦ℓ∞ := {(𝑢,𝑤) ∈ R≥×R𝑑 : 𝑢 ≥ ‖𝑤‖∞} is the epigraph of the

ℓ∞ norm on R𝑑. The dual cone 𝒦*
ℓ∞

is the epigraph of the ℓ1 norm.

Euclidean norm cone. 𝒦ℓ2 := {(𝑢,𝑤) ∈ R≥ × R𝑑 : 𝑢 ≥ ‖𝑤‖} is the (self-dual)

epigraph of the ℓ2 norm on R𝑑 (AKA second-order cone).

Euclidean norm square cone. 𝒦sqr := {(𝑢, 𝑣, 𝑤) ∈ R≥ × R≥ × R𝑑 : 2𝑢𝑣 ≥ ‖𝑤‖2}

is the (self-dual) epigraph of the perspective of the square of the ℓ2 norm on R𝑑

(AKA rotated second-order cone).

Spectral norm cone. 𝒦ℓspec := {(𝑢,𝑤) ∈ R≥ × R𝑟𝑠 : 𝑢 ≥ 𝜎max(mat(𝑤))}, where

𝜎max is the largest singular value function, is the epigraph of the spectral norm

on R𝑟×𝑠, assuming 𝑟 ≤ 𝑠 without loss of generality. Similarly, 𝒦*
ℓspec

is the

epigraph of the matrix nuclear norm (i.e. the sum of singular values).

Matrix square cone. 𝒦matsqr :=
{︀
(𝑢, 𝑣, 𝑤) ∈ Rsd(𝑟) × R≥ × R𝑟𝑠 : 𝑈 ∈ S𝑟

⪰, 2𝑈𝑣 ⪰

𝑊𝑊⊤}︀, where 𝑈 := mat(𝑢) and 𝑊 := mat(𝑤) ∈ R𝑟×𝑠, is the homogenized

symmetric matrix epigraph of the symmetric outer product, assuming 𝑟 ≤ 𝑠

without loss of generality [Güler and Tunçel, 1998].

Generalized power cone. 𝒦gpow :=
{︀
(𝑢,𝑤) ∈ R𝑟

≥ × R𝑠 :
∏︀

𝑖∈J𝑟K 𝑢
𝛼𝑖
𝑖 ≥ ‖𝑤‖

}︀
,

parametrized by exponents 𝛼 ∈ R𝑟
> with 𝑒⊤𝛼 = 1, is the generalized power

cone [Chares, 2009, Section 3.1.2].

Power mean cone. 𝒦pow :=
{︀
(𝑢,𝑤) ∈ R × R𝑑

≥ : 𝑢 ≤
∏︀

𝑖∈J𝑑K 𝑤
𝛼𝑖
𝑖

}︀
, parametrized by

exponents 𝛼 ∈ R𝑑
> with 𝑒⊤𝛼 = 1, is the hypograph of the power mean on R𝑑

≥.

Geometric mean cone. 𝒦geo is the hypograph of the geometric mean on R𝑑
≥, a

special case of 𝒦pow with equal exponents.

Root-determinant cone. 𝒦rtdet :=
{︀
(𝑢,𝑤) ∈ R×Rsd(𝑑) : 𝑊 ∈ S𝑑

⪰, 𝑢 ≤ (det(𝑊 ))1/𝑑
}︀
,

where 𝑊 := mat(𝑤), is the hypograph of the 𝑑th-root-determinant on S𝑑
⪰.

Logarithm cone. 𝒦log := cl
{︀
(𝑢, 𝑣, 𝑤) ∈ R × R> × R𝑑

> : 𝑢 ≤
∑︀

𝑖∈J𝑑K 𝑣 log(𝑤𝑖/𝑣)
}︀

is

the hypograph of the perspective of the sum of logarithms on R𝑑
>.
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Log-determinant cone. 𝒦logdet := cl
{︀
(𝑢, 𝑣, 𝑤) ∈ R × R> × Rsd(𝑑) : 𝑊 ∈ S𝑑

≻, 𝑢 ≤

𝑣 logdet(𝑊/𝑣)
}︀
, where 𝑊 := mat(𝑤), is the hypograph of the perspective of

the log-determinant on S𝑑
≻.

Separable spectral function cone. 𝒦sepspec := cl{(𝑢, 𝑣, 𝑤) ∈ R×R>×int(𝒬) : 𝑢 ≥

𝑣𝜙(𝑤/𝑣)}, where 𝒬 is 𝒦≥ or 𝒦⪰ (a cone of squares of a Jordan algebra), is the

epigraph of the perspective of a convex separable spectral function 𝜙 : int(𝒬)→

R, such as the sum or trace of the negative logarithm, negative entropy, or power

in (1, 2] (see Coey et al. [2021a] for more details). The complexity estimates in

Table 2.1 depend on whether 𝒬 is 𝒦≥ or 𝒦⪰.

Relative entropy cone. 𝒦relent := cl
{︀
(𝑢, 𝑣, 𝑤) ∈ R×R𝑑

>×R𝑑
> : 𝑢 ≥

∑︀
𝑖∈J𝑑K 𝑤𝑖 log(𝑤𝑖/𝑣𝑖)

}︀
is the epigraph of vector relative entropy.

Matrix relative entropy cone. 𝒦matrelent := cl
{︀
(𝑢, 𝑣, 𝑤) ∈ R × Rsd(𝑑) × Rsd(𝑑) :

𝑉 ∈ S𝑑
≻,𝑊 ∈ S𝑑

≻, 𝑢 ≥ tr(𝑊 (log(𝑊 ) − log(𝑉 )))
}︀
, where 𝑉 := mat(𝑣) and

𝑊 := mat(𝑤), is the epigraph of matrix relative entropy.2

Weighted sum-of-squares (WSOS) cones. An interpolant basis represents a poly-

nomial implicitly by its evaluations at a fixed set of 𝑑 points. Given a ba-

sic semialgebraic domain defined by 𝑟 polynomial inequalities, the four WSOS

cones below are parameterized by matrices 𝑃𝑙 ∈ R𝑑×𝑠𝑙 for 𝑙 ∈ J𝑟K. Each 𝑃𝑙 is

constructed by evaluating 𝑠𝑙 independent polynomials (columns) at the 𝑑 points

(rows), following Papp and Yildiz [2019]. For simplicity, the complexity esti-

mates in Table 2.1 assume 𝑠𝑙 = 𝑠,∀𝑙 ∈ J𝑟K. Note that 𝑠 < 𝑑 ≤ 𝑠2. More detailed

descriptions of these cones are given in Chapter 5.

Scalar WSOS cone. 𝒦SOS is a cone of polynomials that are guaranteed to be

nonnegative pointwise on the domain.

Symmetric matrix WSOS cone. 𝒦matSOS is a cone of polynomial symmetric

matrices (in an svec-like format) of side dimension 𝑡 that are guaranteed

2The logarithmically homogeneous barrier for 𝒦matrelent that Hypatia uses is conjectured by
Karimi and Tunçel [2020] to be self-concordant.
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to belong to S⪰ pointwise on the domain. We let 𝑚 := 𝑠𝑡+ 𝑑 in Table 2.1

for succinctness.

ℓ1 epigraph WSOS cone. 𝒦ℓ1SOS is a cone of polynomial vectors of length

1 + 𝑡 that are guaranteed to belong to 𝒦*
ℓ∞

pointwise on the domain.

ℓ2 epigraph WSOS cone. 𝒦ℓ2SOS is a cone of polynomial vectors of length

1 + 𝑡 that are guaranteed to belong to 𝒦ℓ2 pointwise on the domain.

For each cone, we have an analytic form for the feasibility check, gradient, Hessian,

and TOO oracles defined in Section 2.2. That is, we always avoid iterative numerical

procedures such as optimization, which are typically slow, numerically unstable, and

require tuning. Hypatia’s algorithm always evaluates the feasibility check before the

gradient, Hessian, and TOO (which are only defined at strictly feasible points), and

the gradient is evaluated before the Hessian and TOO. For most of these cones, the

feasibility check and gradient oracles compute values and factorizations that are also

useful for computing the Hessian and TOO, so this data is cached in the cone data

structures and reused where possible. In Table 2.1, we estimate the time complexities

(ignoring constants) of these four oracles for each cone, counting the cost of cached

values and factorizations only once (for the oracle that actually computes them).

Table 2.1 shows that the TOO is never more expensive than the feasibility check,

gradient, and Hessian oracles (i.e. the oracles needed by SY). Indeed, our computa-

tional results in Section 2.7.3 demonstrate that the TOO is very rarely an algorithmic

bottleneck in practice.

Our TOO in (2.2) is distinct from the ‘higher order corrector’ terms proposed by

Mehrotra [1992], Dahl and Andersen [2021]. The method by Mehrotra [1992] only

applies to symmetric cones, and Dahl and Andersen [2021] test their technique only

for the standard exponential cone. Compared to the third order term proposed by

Dahl and Andersen [2021], our TOO has a simpler and more symmetric structure,

as it relies on only one direction 𝛿𝑠 rather than two. Like the gradient and Hessian

oracles, our TOO is additive for sums of LHSCBs, which can be useful for cones (such

as 𝒦DNN and 𝒦SOS) that are defined as intersections of other cones. We leverage these
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cone dim(𝒦) 𝜈 feasibility gradient Hessian TOO

𝒦≥ 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑
𝒦⪰ sd(𝑑) 𝑑 𝑑3 𝑑3 𝑑4 𝑑3

𝒦DNN sd(𝑑) sd(𝑑) 𝑑3 𝑑3 𝑑4 𝑑3

𝒦sPSD 𝑑 𝑠 𝐽𝐷2𝑙 𝐽𝐷2𝑙 𝑑𝐽𝐷2𝑙 𝐽𝐷2𝑙
𝒦LMI 𝑑 𝑠 𝑑𝑠2 + 𝑠3 𝑑𝑠3 𝑑2𝑠2 𝑑𝑠2 + 𝑠3

𝒦ℓ∞ 1 + 𝑑 1 + 𝑑 𝑑 𝑑 𝑑 𝑑
𝒦ℓ2 , 𝒦sqr 1 + 𝑑 2 𝑑 𝑑 𝑑2 𝑑
𝒦ℓspec 1 + 𝑟𝑠 1 + 𝑟 𝑟2𝑠+ 𝑟3 𝑟2𝑠+ 𝑟3 𝑟2𝑠2 𝑟𝑠2

𝒦matsqr sd(𝑟) + 1 + 𝑟𝑠 1 + 𝑟 𝑟2𝑠+ 𝑟3 𝑟2𝑠+ 𝑟3 𝑟2𝑠2 𝑟𝑠2

𝒦gpow 𝑟 + 𝑠 1 + 𝑟 𝑟 + 𝑠 𝑟 + 𝑠 𝑟2 + 𝑠2 𝑟 + 𝑠
𝒦pow, 𝒦geo 1 + 𝑑 1 + 𝑑 𝑑 𝑑 𝑑2 𝑑
𝒦rtdet 1 + sd(𝑑) 1 + 𝑑 𝑑3 𝑑3 𝑑4 𝑑3

𝒦log 2 + 𝑑 2 + 𝑑 𝑑 𝑑 𝑑2 𝑑
𝒦logdet 2 + sd(𝑑) 2 + 𝑑 𝑑3 𝑑3 𝑑4 𝑑3

𝒦sepspec-𝒦≥ 2 + 𝑑 2 + 𝑑 𝑑 𝑑 𝑑2 𝑑
𝒦sepspec-𝒦⪰ 2 + sd(𝑑) 2 + 𝑑 𝑑3 𝑑3 𝑑5 𝑑3

𝒦relent 1 + 2𝑑 1 + 2𝑑 𝑑 𝑑 𝑑2 𝑑
𝒦matrelent 1 + 2 sd(𝑑) 1 + 2𝑑 𝑑3 𝑑3 𝑑5 𝑑4

𝒦SOS 𝑑 𝑠𝑟 𝑑𝑠2𝑟 𝑑𝑠2𝑟 𝑑2𝑠𝑟 𝑑𝑠2𝑟
𝒦matSOS 𝑑 sd(𝑡) 𝑠𝑡𝑟 𝑚𝑠2𝑡2𝑟 𝑑𝑠2𝑡2𝑟 𝑑2𝑠𝑡3𝑟 𝑚𝑠2𝑡2𝑟
𝒦ℓ1SOS 𝑑(1 + 𝑡) 𝑠𝑡𝑟 𝑑𝑠2𝑡𝑟 𝑑𝑠2𝑡𝑟 𝑑2𝑠𝑡𝑟 𝑑𝑠2𝑡𝑟
𝒦ℓ2SOS 𝑑(1 + 𝑡) 2𝑠𝑟 𝑑𝑠2𝑡𝑟 𝑑𝑠2𝑡𝑟 𝑑2𝑠𝑡2𝑟 𝑑𝑠2𝑡2𝑟

Table 2.1: Cone dimension dim(𝒦), LHSCB parameter 𝜈, and time complexity
estimates (ignoring constants) for our feasibility check, gradient, Hessian, and TOO
implementations, for the exotic cones defined in Section 2.5.

properties to obtain fast and numerically stable TOO implementations.

This is illustrated in Section 4.1, where we define LHSCBs and derive efficient

TOO procedures for a class of cones that can be characterized as intersections of

slices of the PSD cone 𝒦⪰. In Chapter 3, we derive efficient TOO procedures for

a class of spectral function cones on positive domains (𝒦sepspec, 𝒦log, 𝒦logdet, 𝒦geo,

𝒦rtdet).

2.6 Preprocessing and solving for search directions

We discuss preprocessing and initial point finding procedures and solving structured

linear systems for directions. Although Hypatia has various alternative options for
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these procedures, we only describe the set of options we fix in our computational

experiments in Section 2.7, to give context for these results. These techniques are

likely to be useful for other conic PDIPM implementations.

Given a conic model specified in the general primal conic form (2.4), we first rescale

the primal and dual equality constraints (2.4b) and (2.5b) to improve the conditioning

of the affine data. Next, we perform a QR factorization of 𝐴⊤ and check whether

any primal equalities are inconsistent (terminating if so). We use this factorization

to modify 𝑐,𝐺, ℎ and eliminate all 𝑝 primal equalities (removing dual variable 𝑦),

reducing the dimension of the primal variable 𝑥 from 𝑛 to 𝑛 − 𝑝. Next, we perform

a QR factorization of the modified 𝐺. We use this factorization to check whether

any dual equalities are inconsistent (terminating if so) and to remove any redundant

dual equalities, further reducing the dimension of 𝑥. This factorization also allows us

to cheaply compute an initial 𝑥0 satisfying (2.14c). Since 𝑦 is eliminated, we do not

need to solve (2.15b) for 𝑦0.

Starting from the initial interior point 𝜔0 defined in Section 2.4.1, we perform

PDIPM iterations until the convergence conditions in Section 2.4.3 (in the prepro-

cessed space) are met. Finally, we reuse the two QR factorizations to lift the ap-

proximate certificate for the preprocessed model to one for the original model. The

residual norms for the lifted certificate could violate the convergence tolerances, but

we have not found such violations to be significant on our benchmark instances.

During each PDIPM iteration, we solve the linear system (2.25) for a single LHS

matrix and between one and four RHS vectors, to obtain directions vectors needed

for one of the stepping procedures described in Section 2.4.5. Instead of factorizing

the large square nonsymmetric block-sparse LHS matrix, we utilize its structure to

reduce the size of the factorization needed. Some of these techniques are adapted

from methods in CVXOPT (see Vandenberghe [2010, Section 10.3]).

First we eliminate 𝑠 and 𝜅, yielding a square nonsymmetric system, then we

eliminate 𝜏 to get a symmetric indefinite system in 𝑥 and 𝑧. Most interior point solvers

use a sparse LDL factorization (with precomputed symbolic factorization) to solve this

system. Although Hypatia can optionally do the same, we see improved performance
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on our benchmark instances by further reducing the system. After eliminating 𝑧, we

have a (generally dense) positive definite system, which we solve via a dense Cholesky

factorization. In terms of the original dimensions of the model before preprocessing

(assuming no redundant equalities), the side dimension of this system is 𝑛−𝑝. Finally,

after finding a solution to (2.25), we apply several rounds of iterative refinement in

working precision to improve the solution quality.

We note that this Cholesky-based system solver method does not require explicit

Hessian oracles, only oracles for left-multiplication by the Hessian or inverse Hessian.

As we discuss in Section 4.1 and Coey et al. [2021a], these optional oracles can be

more efficient and numerically stable to compute for many exotic cones. For cones

without these oracles, Hypatia calls the explicit Hessian matrix oracle, performing a

Cholesky factorization of the Hessian if necessary.

2.7 Computational testing

In Section 2.7.1, we introduce a diverse set of exotic conic benchmark instances gen-

erated from a variety of applied examples. In Section 2.7.2, we describe our method-

ology for comparing the stepping procedures from Section 2.4.5, and in Section 2.7.3

we examine our computational results.

2.7.1 Exotic conic benchmark set

We generate 379 instances (in our primal general form (2.4)) from 37 applied examples

in Hypatia’s examples folder. All instances are primal-dual feasible except for 12

that are primal infeasible and one that is dual infeasible. For most examples, we

construct multiple formulations using different predefined exotic cones from the list

in Section 2.5. Each cone from this list appears in at least one instance, so we consider

our benchmark set to be the most diverse collection of conic instances available.

We generate most instances using JuMP, but for some we use Hypatia’s native

model interface. Due to the size of some instances and the lack of a standard instance

storage format recognizing our cone types, we generate all instances on the fly in Julia.
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For instances that use random data, we set random seeds to ensure reproducibility.

Figure 2-1 shows the distributions of instance dimensions and exotic cone counts. All

instances have at least one cone (note any 𝒦≥ cones are concatenated together, so

𝒦≥ is counted at most once) and take at least one iteration to solve with Hypatia.

Below we briefly introduce each example. In Table 2.2, we summarize for each

example the number of corresponding instances and the cone types represented in at

least one of the instances. We do not distinguish dual cones and primal cones in this

summary (for example, instances that use 𝒦*
ℓ∞

are only listed as using 𝒦ℓ∞). For some

examples, we describe a subset of formulations in Coey et al. [2021d] and Chapter 5.

Our benchmark set includes ten instances from CBLIB (a conic benchmark instance

library, see Friberg [2016]). We chose to avoid running a larger sample of instances

from CBLIB so that the relatively few cone types supported by CBLIB version 3 are

not over-represented in our benchmark set.

Central polynomial matrix. Minimize a spectral function of a gram matrix of a

polynomial.

Classical-quantum capacity. Compute the capacity of a classical-to-quantum chan-

nel (adapted from Fawzi and Fawzi [2018, Section 3.1]).

Condition number. Minimize the condition number of a matrix pencil subject to

a linear matrix inequality (adapted from Boyd et al. [1994, Section 3.2]).

Contraction analysis. Find a contraction metric that guarantees global stability

of a dynamical system (adapted from Aylward et al. [2008, Section 5.3]). Six

instances are primal infeasible.

Convexity parameter. Find the strong convexity parameter of a polynomial func-

tion over a domain.

Covariance estimation. Estimate a covariance matrix that satisfies some given

prior information and minimizes a given convex spectral function.
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Density estimation. Find a valid polynomial density function maximizing the like-

lihood of a set of observations (compare to [Papp and Alizadeh, 2014, Section

4.3], see Coey et al. [2021d, Section 5.6]).

Discrete maximum likelihood. Maximize the likelihood of some observations at

discrete points, subject to the probability vector being close to a uniform prior.

D-optimal design. Solve a D-optimal experiment design problem, i.e. maximize

the determinant of the information matrix subject to side constraints (adapted

from Boyd and Vandenberghe [2004, Section 7.5]; see Coey et al. [2021d, Section

5.4]).

Entanglement-assisted capacity. Compute the entanglement-assisted classical ca-

pacity of a quantum channel (adapted from Fawzi and Fawzi [2018, Section

3.2]).

Experiment design. Solve a general experiment design problem that minimizes a

given convex spectral function of the information matrix subject to side con-

straints (adapted from Boyd and Vandenberghe [2004, Section 7.5]).

Linear program. Solve a simple linear program.

Lotka-Volterra. Find an optimal controller for a Lotka-Volterra model of popula-

tion dynamics (adapted from Korda et al. [2016, Section 7.2]).

Lyapunov stability. Minimize an upper bound on the root mean square gain of

a dynamical system (adapted from Boyd et al. [1994, Section 6.3.2] and Boyd

[2009, Page 6]).

Matrix completion. Complete a rectangular matrix by minimizing the nuclear

norm and constraining the missing entries (compare to Agrawal et al. [2019,

Equation 8]; see Coey et al. [2021d, Section 5.2]).

Matrix quadratic. Find a rectangular matrix that minimizes a linear function and

satisfies a constraint on the outer product of the matrix.
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Matrix regression. Solve a multiple-output (or matrix) regression problem with

regularization terms, such as ℓ1, ℓ2, or nuclear norm (see Coey et al. [2021d,

Section 5.3]).

Maximum volume hypercube. Find a maximum volume hypercube (with edges

parallel to the axes) inside a given polyhedron or ellipsoid (adapted from MOSEK

ApS [2020, Section 4.3.2]).

Nearest correlation matrix. Compute the nearest correlation matrix in the quan-

tum relative entropy sense (adapted from Fawzi et al. [2019]).

Nearest polynomial matrix. Given a symmetric matrix of polynomials 𝐻, find a

polynomial matrix 𝑄 that minimizes the sum of the integrals of its elements

over the unit box and guarantees 𝑄−𝐻 is pointwise PSD on the unit box.

Nearest PSD matrix. Find a sparse PSD matrix or a PSD-completable matrix

(with a given sparsity pattern) with constant trace that maximizes a linear

function (adapted from Sun and Vandenberghe [2015]).

Nonparametric distribution. Given a random variable taking values in a finite

set, compute the distribution minimizing a given convex spectral function over

all distributions satisfying some prior information.

Norm cone polynomial. Given a vector of polynomials, check a sufficient condition

for pointwise membership in 𝒦ℓ2 or 𝒦*
ℓ∞

. Four instances are primal infeasible.

Polynomial envelope. Find a polynomial that closely approximates, over the unit

box, the lower envelope of a given list of polynomials (see Papp and Yildiz [2019,

Section 7.2.1]).

Polynomial minimization. Compute a lower bound for a given polynomial over

a given semialgebraic set (see Papp and Yildiz [2019, Section 7.3.1] and Coey

et al. [2021d, Section 5.5]). Some instances use polynomials with known optimal

values from Burkardt [2016].
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Polynomial norm. Find a polynomial that, over the unit box, has minimal inte-

gral and belongs pointwise to the epigraph of the ℓ1 or ℓ2 norm of other given

polynomials (see Chapter 5).

Portfolio. Maximize the expected returns of a stock portfolio and satisfy various

risk constraints (see Coey et al. [2021d, Section 5.1]).

Region of attraction. Find the region of attraction of a polynomial control system

(see Henrion and Korda [2013, Section 9.1]).

Relative entropy of entanglement. Compute a lower bound on relative entropy

of entanglement with a positive partial transpose relaxation (adapted from

Fawzi and Fawzi [2018, Section 4]).

Robust geometric programming. Bound the worst-case optimal value of an un-

certain signomial function with a given coefficient uncertainty set (adapted from

Chandrasekaran and Shah [2017, Equation 39]).

Semidefinite polynomial matrix. Check a sufficient condition for global convex-

ity of a given polynomial. Two instances are primal infeasible and one is dual

infeasible.

Shape constrained regression. Given a dataset, fit a polynomial function that

satisfies shape constraints such as monotonicity or convexity over a domain

(see Coey et al. [2021d, Section 5.7]). Several instances use real datasets from

Mazumder et al. [2019].

Signomial minimization. Compute a global lower bound for a given signomial

function (see Murray et al. [2020]). Several instances use signomials with known

optimal values from Murray et al. [2020], Chandrasekaran and Shah [2016].

Sparse LMI. Optimize over a simple linear matrix inequality with sparse data.

Sparse principal components. Solve a convex relaxation of the problem of ap-

proximating a symmetric matrix by a rank-one matrix with a cardinality-constrained

eigenvector (see d’Aspremont et al. [2007, Section 2]).
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Stability number. Given a graph, solve for a particular strengthening of the theta

function towards the stability number (adapted from Laurent and Piovesan

[2015, Equation 2.4]).
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Figure 2-1: Histograms summarizing the benchmark instances in the primal conic
form (2.4). Instance size (log scale) is the sum of the primal variable, equality, and
conic constraint dimensions. Exotic cone count (log scale) is the number of exotic
cones comprising the Cartesian product cone.

2.7.2 Methodology

We can assess the practical performance of a stepping procedure on a given benchmark

instance according to several metrics: whether the correct conic certificate (satisfying

our numerical tolerances, discussed below) is found, and if so, the PDIPM iteration

count and solve time. Across the benchmark set, we compare performance between

consecutive pairs of the five stepping procedures outlined in Section 2.4.5.

basic. The basic prediction or centering stepping procedure without any enhance-

ments; described in Section 2.4.5, this is similar to the method in Alfonso solver

[Papp and Yıldız, 2021], which is a practical implementation of the algorithm

by Skajaa and Ye [2015], Papp and Yıldız [2017].

prox. The basic procedure modified to use a less restrictive central path proximity

condition; described in Section 2.4.5.
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example # cones in at least one instance

CBLIB 10 𝒦≥ 𝒦⪰ 𝒦ℓ2 𝒦sqr 𝒦log 𝒦gpow

central polynomial matrix 24 𝒦≥ 𝒦⪰ 𝒦sqr 𝒦gpow 𝒦rtdet 𝒦log 𝒦sepspec

classical-quantum capacity 9 𝒦≥ 𝒦⪰ 𝒦log 𝒦sepspec

condition number 6 𝒦≥ 𝒦⪰ 𝒦LMI

contraction analysis 8 𝒦⪰ 𝒦matSOS

convexity parameter 7 𝒦⪰ 𝒦matSOS

covariance estimation 13 𝒦≥ 𝒦⪰ 𝒦sqr 𝒦gpow 𝒦rtdet 𝒦log 𝒦sepspec

density estimation 16 𝒦≥ 𝒦⪰ 𝒦sqr 𝒦geo 𝒦log 𝒦SOS

discrete maximum likelihood 7 𝒦≥ 𝒦pow 𝒦log 𝒦sepspec

D-optimal design 16 𝒦≥ 𝒦⪰ 𝒦ℓ∞ 𝒦ℓ2 𝒦sqr 𝒦geo 𝒦rtdet 𝒦log 𝒦logdet

entanglement-assisted capacity 3 𝒦⪰ 𝒦sepspec 𝒦matrelent

experiment design 13 𝒦≥ 𝒦⪰ 𝒦sqr 𝒦gpow 𝒦rtdet 𝒦log 𝒦sepspec

linear program 3 𝒦≥
Lotka-Volterra 3 𝒦⪰

Lyapunov stability 10 𝒦⪰ 𝒦matsqr

matrix completion 11 𝒦≥ 𝒦⪰ 𝒦sqr 𝒦ℓspec 𝒦gpow 𝒦geo 𝒦log

matrix quadratic 8 𝒦⪰ 𝒦matsqr

matrix regression 11 𝒦≥ 𝒦⪰ 𝒦ℓ∞ 𝒦ℓ2 𝒦sqr 𝒦ℓspec

maximum volume hypercube 15 𝒦≥ 𝒦ℓ∞ 𝒦ℓ2 𝒦sqr 𝒦geo

nearest correlation matrix 3 𝒦matrelent

nearest polynomial matrix 8 𝒦⪰ 𝒦SOS 𝒦matSOS

nearest PSD matrix 28 𝒦⪰ 𝒦sPSD

nonparametric distribution 10 𝒦≥ 𝒦sqr 𝒦geo 𝒦log 𝒦sepspec

norm cone polynomial 10 𝒦ℓ1SOS 𝒦ℓ2SOS

polynomial envelope 7 𝒦SOS

polynomial minimization 15 𝒦⪰ 𝒦SOS

polynomial norm 10 𝒦SOS 𝒦matSOS 𝒦ℓ1SOS 𝒦ℓ2SOS

portfolio 9 𝒦≥ 𝒦ℓ∞ 𝒦ℓ2

region of attraction 6 𝒦⪰ 𝒦SOS

relative entropy of entanglement 6 𝒦⪰ 𝒦matrelent

robust geometric programming 6 𝒦≥ 𝒦ℓ∞ 𝒦log 𝒦relent

semidefinite polynomial matrix 18 𝒦⪰ 𝒦ℓ2 𝒦matSOS

shape constrained regression 11 𝒦≥ 𝒦⪰ 𝒦ℓ∞ 𝒦ℓ2 𝒦SOS 𝒦matSOS

signomial minimization 13 𝒦≥ 𝒦log 𝒦relent

sparse LMI 15 𝒦⪰ 𝒦sPSD 𝒦LMI

sparse principal components 6 𝒦≥ 𝒦⪰ 𝒦ℓ∞

stability number 6 𝒦≥ 𝒦⪰ 𝒦DNN

Table 2.2: For each example, the count of instances and list of exotic cones (defined
in Section 2.5) used in at least one instance.
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TOA. The prox procedure with the TOA enhancement to incorporate third order

LHSCB information; described in Section 2.4.5.

curve. The TOA procedure adapted for a single backtracking search on a curve

instead of two backtracking line searches; described in Section 2.4.5.

comb. The curve procedure modified to search along a curve of combinations of

both the prediction and centering directions and their corresponding adjustment

directions; described in Section 2.4.5.

We perform all instance generation, computational experiments, and results anal-

ysis using double precision floating point format, with Ubuntu 21.04, Julia 1.7, and

Hypatia 0.5.1 (with default options), on dedicated hardware with an AMD Ryzen 9

3950X 16-core processor (32 threads) and 128GB of RAM. In Section 2.6, we outline

the default procedures Hypatia uses for preprocessing, initial point finding, and linear

system solving for search directions. Simple scripts and instructions for reproducing

all results are available in Hypatia’s benchmarks/stepper folder. The benchmark

script runs all solves twice and uses results from the second run, to exclude Julia

compilation overhead. A CSV file containing raw results is available at the Hypatia

wiki page.

When Hypatia converges for an instance, i.e. claims it has found a certificate of

optimality, primal infeasibility, or dual infeasibility, our scripts verify that this is the

correct type of certificate for that instance. For some instances, our scripts also check

additional conditions, for example that the objective value of an optimality certificate

approximately equals the known true optimal value. We do not set restrictive time

or iteration limits. All failures to converge are caused by Hypatia ‘stalling’ during

the stepping iterations: either the backtracking search cannot step a distance of

at least the minimal value in the 𝛼 schedule, or across several prediction steps or

combined directions steps, Hypatia fails to make sufficient progress towards meeting

the convergence conditions in Section 2.4.3.

Since some instances are more numerically challenging than others, we set the

termination tolerances (described in Section 2.4.3) separately for each instance. Let
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𝜖 ≈ 2.22 × 10−16 be the machine epsilon. For most instances, we use 𝜀𝑓 = 𝜀𝑟 =

10𝜖1/2 ≈ 1.49× 10−7 for the feasibility and relative gap tolerances, 𝜀𝑖 = 𝜀𝑎 = 10𝜖3/4 ≈

1.82 × 10−11 for the infeasibility and absolute gap tolerances, and 𝜀𝑝 = 0.1𝜖3/4 ≈

1.82 × 10−13 for the ill-posedness tolerance. For 50 instances that are particularly

numerically challenging, we loosen all of these tolerances by a factor of either 10 or

100, and for two challenging primal infeasible instances of the contraction analysis

example, we set 𝜀𝑖 = 10−9. This ensures that for every benchmark instance, at least

one of the five stepping procedures converges.

Following Fleming and Wallace [1986], we define the shifted geometric mean with

shift 𝑠 ≥ 0, for 𝑑 values 𝑣 ∈ R𝑑
>, as:

𝑀(𝑣, 𝑠) :=
∏︀

𝑖∈J𝑑K(𝑣𝑖 + 𝑠)1/𝑑 − 𝑠. (2.41)

We always apply a shift of one for iteration counts. Since different stepping procedures

converge on different subsets of instances, in tables we show three types of shifted

geometric means, each computed from a vector of values (𝑣 in (2.41)) obtained using

one of the following approaches.

every. Values for the 353 instances on which every stepping procedure converged.

this. Values for instances on which this stepping procedure (corresponding to the

row of the table) converged.

all. Values for all instances, but for any instances for which this stepping procedure

(corresponding to the row of the table) failed to converge, the value is replaced

with two times the maximum value for that instance across the stepping proce-

dures that converged.

The shifted geometric means for the every approach are the most directly comparable

because they are computed on a fixed subset of instances, so we usually quote the

every results in our discussion in Section 2.7.3.

Table 2.3 shows counts of converged instances and shifted geometric means of

iteration count and total solve time (in milliseconds), for the five stepping procedures.
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We use a shift of one millisecond for the solve times in Table 2.3, as some instances

solve very quickly (see Figure 2-2).

Table 2.4 shows shifted geometric means of the time (in milliseconds) Hypatia

spends performing each of the following key algorithmic components, for the five

stepping procedures.

init. Performed once during an entire solve run, independently of the stepping itera-

tions. Includes rescaling and preprocessing of model data, initial interior point

finding, and linear system solver setup (see Section 2.6).

LHS. Performed at the start of each iteration. Includes updating data that the

linear system solver (which has a fixed LHS in each iteration) uses to efficiently

compute at least one direction (such as updating and factorizing the positive

definite matrix in Section 2.6).

RHS. Performed between one and four times per iteration, depending on the step-

ping procedure. Includes updating an RHS vector (see (2.25)) for the linear

system for search directions. Note that the TOO is only evaluated while com-

puting the centering TOA RHS (2.29b) and the prediction TOA RHS (2.39b).

direc. Performed for each RHS vector. Includes solving the linear system for a

search direction (see (2.25)) using the data computed during LHS and a single

RHS vector computed during RHS, and performing iterative refinement on the

direction (see Section 2.6).

search. Performed once or twice per iteration (occasionally more if the step length is

near zero), depending on the stepping procedure. Includes searching using back-

tracking along a line or curve to find an interior point satisfying the proximity

conditions.

For some instances that solve extremely quickly, these subtimings sum to only around

half of the total solve time due to extraneous overhead. However for slower instances,

these components account for almost the entire solve time. In Table 2.4, total is
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the time over all iterations, and per iteration is the average time per iteration (the

arithmetic means are computed before the shifted geometric mean). We use a shift

of 0.1 milliseconds for the init and total subtimings (left columns) and a shift of 0.01

milliseconds for the per iteration subtimings (right columns).

Finally, in Figures 2-3 and 2-6 we use performance profiles [Dolan and Moré, 2002,

Gould and Scott, 2016] to compare iteration counts and solve times between pairs

of stepping procedures. These should be interpreted as follows. The performance

ratio for procedure 𝑖 and instance 𝑗 is the value (iterations or solve time) attained by

procedure 𝑖 on instance 𝑗 divided by the smaller value attained by the two procedures

on instance 𝑗. Hence a performance ratio is at least one, and smaller values indicate

better relative performance. For a point (𝑥, 𝑦) on a performance profile curve for a

particular procedure, 𝑥 is the logarithm (base 2) of performance ratio and 𝑦 is the

proportion of instances for which the procedure attains that performance ratio or

smaller. For example, a curve crosses the vertical axis at the proportion of instances

on which the corresponding procedure performed at least as well as the alternative

procedure. We use the Julia package BenchmarkProfiles.jl [Orban, 2019] to compute

coordinates for the performance profile curves.

2.7.3 Results

Table 2.3 and Figure 2-6 demonstrate that each of the four cumulative stepping en-

hancements tends to improve Hypatia’s iteration count and solve time. The enhance-

ments do not have a significant impact on the number of instances Hypatia converges

on. However, if we had enforced time or iteration limits, the enhancements would

have also improved the number of instances solved. This is clear from Figure 2-2,

which shows the distributions of iteration counts and solve times for the basic and

comb stepping procedures. We note that Figure 2-4 (left) supports the intuition that

formulation size is strongly positively correlated with solve time for comb.

Overall, Table 2.3 shows that on the subset of instances solved by every stepping

procedure (every), the enhancements together reduce the shifted geometric means of

iterations and solve time by more than 80% and 70% respectively (i.e. comparing comb
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to basic). Figure 2-3 shows that the iteration count and solve time improve on nearly

every instance solved by both basic and comb, and the horizontal axis scale shows that

the magnitude of these improvements is large on most instances. Figure 2-5 shows

that for instances that take more iterations or solve time, the enhancements tend to

yield a greater improvement in these measures. On every instance, the enhancements

improve the iteration count by at least 33%. The few instances for which solve time

regressed with the enhancements all solve relatively quickly.
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Figure 2-2: Overlayed histograms of iteration count (left, log scale) and solve time
(right, log scale, in seconds) for the basic and comb stepping procedures, excluding
instances that fail to converge.

iterations solve time

step conv every this all every this all

basic 371 101.3 100.9 102.4 2131 2207 2282
prox 369 64.7 65.3 67.2 1317 1390 1451
TOA 374 35.0 35.3 36.1 1014 1063 1103
curve 372 29.7 30.0 31.0 742 781 820
comb 367 18.3 18.6 20.0 624 656 706

Table 2.3: For each stepping procedure, the number of converged instances and
shifted geometric means of iterations and solve times (in milliseconds).

Each enhancement, by design, changes one modular component or aspect of the

stepping procedure. Below, we examine the impact of our algorithmic choices by

discussing pairwise comparisons of consecutive stepping procedures.
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Figure 2-3: Performance profiles (see Section 2.7.2) of iteration count (left) and solve
time (right) for the four stepping enhancements overall.
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Figure 2-4: Solve time (log scale, in seconds) for the comb stepping procedure against
(left) instance size (log scale) and (right) the proportion of solve time spent in RHS,
excluding instances that fail to converge.

Less restrictive proximity

We compare basic and prox to evaluate the central path proximity enhancement

introduced in Section 2.4.5. Figure 2-6 (first row) shows that the iteration count and

solve time improve for nearly all instances. From Table 2.3, the shifted geometric

means of iteration count and solve time improve by over 35%.

The similarity between the iteration count and solve time performance profiles

in Figure 2-6 and also between the per iteration subtimings in Table 2.4 suggests

that the solve time improvement is driven mainly by the reduction in iteration count.

The per iteration search time decreases slightly, since on average fewer backtracking
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total per iteration

set step init LHS RHS direc search LHS RHS direc search

every

basic 29.5 741 1.45 75.6 125.6 7.73 0.02 0.81 1.29
prox 29.5 486 1.11 50.3 67.7 7.88 0.02 0.84 1.10
TOA 29.4 285 10.96 52.2 73.3 8.28 0.32 1.53 2.14
curve 29.6 244 9.24 44.6 33.4 8.33 0.32 1.53 1.15
comb 29.3 160 10.51 57.6 35.2 8.74 0.58 3.14 1.94

this

basic 30.3 784 1.48 78.8 131.8 8.20 0.02 0.85 1.36
prox 30.1 519 1.12 53.4 72.6 8.35 0.02 0.88 1.16
TOA 30.2 302 11.97 55.4 78.3 8.70 0.35 1.61 2.26
curve 30.5 261 9.99 47.3 35.1 8.80 0.34 1.60 1.20
comb 30.5 171 11.03 60.7 36.4 9.23 0.60 3.27 1.98

all

basic 31.1 814 1.62 82.7 134.7 8.52 0.02 0.91 1.40
prox 31.3 549 1.25 56.2 75.1 8.74 0.02 0.94 1.20
TOA 31.2 317 12.23 57.5 79.7 9.04 0.36 1.66 2.28
curve 31.4 276 10.40 49.6 37.3 9.17 0.36 1.68 1.26
comb 31.4 188 11.88 64.2 40.0 9.66 0.63 3.35 2.10

Table 2.4: For each stepping procedure, the shifted geometric means of subtimings
(in milliseconds) for the key algorithmic components.
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Figure 2-5: Relative improvement, from basic to comb, in iteration count (left) or
solve time (right) against iteration count or solve time (in seconds) respectively for
comb, over the 356 instances on which both basic and comb converge.

search steps are needed per iteration for prox (because it tends to step further in the

prediction directions, as evidenced by the smaller iteration counts). These results

suggest that the central path proximity restrictions in the algorithms by Skajaa and

Ye [2015], Papp and Yıldız [2021] are too conservative from the perspective of practical

69



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

iteration count

basic
prox

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

solve time

basic
prox

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

prox
TOA

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

prox
TOA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TOA
curve

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

TOA
curve

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

curve
comb

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

curve
comb

Figure 2-6: Performance profiles (see Section 2.7.2) of iteration count (left column)
and solve time (right column) for the four stepping enhancements (rows).
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performance, and that we need not restrict iterates to a very small neighborhood of

the central path in order to obtain high quality prediction directions in practice.

Third order adjustments

We compare prox and TOA to evaluate the TOA enhancement introduced in Sec-

tion 2.4.5. Figure 2-6 (second row) shows that the iteration count improves for all

instances and by a fairly consistent magnitude, and the solve time improves for nearly

80% of instances. From Table 2.3, the shifted geometric means of iteration count and

solve time improve by over 45% and over 20% respectively.

Since TOA computes an additional direction and performs an additional back-

tracking search every iteration, the per iteration times for direc and search in Ta-

ble 2.4 nearly double. The RHS time increases substantially, because the TOO is

evaluated for the second RHS vector (used to compute the TOA direction), but RHS

is still much faster than the other components. Per iteration, direc and search also

remain fast compared to LHS. We see an overall solve time improvement because the

reduction in iteration count usually outweighs the additional cost at each iteration.

This suggests that the TOO is generally relatively cheap to compute, and our TOA

approach very reliably improves the quality of the search directions.

Curve search

We compare TOA and curve to evaluate the curve search enhancement introduced in

Section 2.4.5. Figure 2-6 (third row) shows that the iteration count and solve time

improve for most instances, with larger and more consistent improvements for the

solve time. From Table 2.3, the shifted geometric means of iteration count and solve

time improve by over 15% and over 25% respectively.

Since curve performs one backtracking search along a curve instead of the two

backtracking line searches needed by TOA, the per iteration search time in Table 2.4

nearly halves. The other subtimings are unaffected, so curve improves the speed

of each iteration. The improvement in iteration count may stem from the more

dynamic nature of the curve search compared to TOA’s approach of computing a
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fixed combination of the unadjusted and TOA directions as a function of the step

distance in the unadjusted direction.

Combined directions

Finally, we compare curve and comb to evaluate the combined directions enhancement

introduced in Section 2.4.5. Figure 2-6 (fourth row) shows that the iteration count

and solve time improve on around 90% and 70% of instances respectively. From

Table 2.3, the shifted geometric means of iteration count and solve time improve by

nearly 40% and over 15% respectively.

Since comb computes four directions per iteration (unadjusted and TOA directions

for both prediction and centering) instead of two, the per iteration times for RHS and

direc approximately double in Table 2.4. The search time increases because on average

more backtracking curve search steps are needed per iteration (for curve, the centering

phase typically does not require multiple backtracking steps). Per iteration, LHS

remains slower than the other components combined. Hence combining the prediction

and centering phases generally improves practical performance, and should be more

helpful when LHS is particularly expensive (such as when 𝑛− 𝑝, the side dimension

of the PSD matrix we factorize during LHS, is large; see Section 2.6). Furthermore,

Figure 2-4 (right) shows that for most instances, RHS accounts for a small proportion

of the overall solve time for comb, especially for instances that take longer to solve.

This suggests that the TOO is rarely a bottleneck for our comb stepping procedure.
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Chapter 3

Epigraphs of spectral functions

This chapter is based on the submitted paper Coey et al. [2021a]. We chose to rely

on Jordan algebraic notation for this work. Here symmetric cones are characterized

via their description as cones of squares of a Euclidean Jordan algebra.

3.1 Introduction

A class of functions that commonly arise in convex optimization applications are

spectral functions on Euclidean Jordan algebras such as the real vectors and real

symmetric or complex Hermitian matrices. In this context, a spectral function is

a real-valued symmetric function of the (real) eigenvalues. Examples include the

geometric mean (or root-determinant), the entropy (e.g. von Neumann entropy), and

the trace of the inverse (e.g. the A-optimal design criterion). Indeed, many disciplined

convex programming (DCP) functions are spectral functions [Grant et al., 2006, Grant

and Boyd, 2014]. We define spectral cones as proper cones defined from epigraphs

of convex homogeneous spectral functions or epigraphs of perspective functions of

convex spectral functions. These cones allow simple, natural conic reformulations of

a wide range of convex optimization problems. Despite this, to our knowledge there

has been little prior work enabling direct support for various spectral cones in primal-

dual conic solvers. For many spectral cones (e.g. for the negative entropy function),

equivalent EFs using only symmetric cones do not exist, and when they do, they can
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be impractically large.

Recall that Hypatia allows specifying a proper cone 𝒦 by implementing a small

list of oracles. Once 𝒦 is defined, both 𝒦 and its dual cone 𝒦* may be used in

any combination with other recognized cones in Hypatia to construct conic models.

The oracles to implement are: an initial interior point 𝑡 ∈ int(𝒦), a feasibility test

for the cone interior int(𝒦) (and optionally for the dual cone interior int(𝒦*)), and

several derivative oracles for an LHSCB for the cone. The LHSCB oracles needed

for ideal performance are the gradient, the Hessian operator (i.e. the second order

directional derivative applied once to a given direction), the inverse of the Hessian

operator, and the third order directional derivative (applied twice to a given direc-

tion). Fast and numerically stable procedures for evaluating oracles are crucial for

practical performance in conic PDIPM solvers such as Hypatia.

Our first main contribution is to define simple logarithmically homogeneous bar-

riers for spectral cones and derive efficient and numerically stable barrier oracle pro-

cedures. For example, for the case where the spectral function of the cone is sep-

arable, we show how to apply the inverse Hessian operator of the barrier function

very cheaply using a closed-form formula, without the need to compute or factorize

an explicit Hessian matrix (which can be expensive and prone to numerical issues).

Similarly, for the negative log-determinant and root-determinant spectral cones, we

derive highly-efficient specialized oracle procedures.

Our second main contribution is to show that for two important subclasses of spec-

tral cones - the root-determinant cones and the matrix monotone derivative (MMD)

cones - the barriers we propose are LHSCBs. These LHSCBs have parameters that

are only a small additive increment of one larger than the parameter of the LHSCB

for the cone of squares domain of the cone, hence the parameters are near-optimal.

MMD cones allow modeling epigraphs of a variety of useful separable spectral func-

tions, in particular the trace (or sum) of the negative logarithm (i.e. the negative

log-determinant), negative entropy, and certain power functions. Furthermore, the

dual cones of the MMD cones allow modeling epigraphs of even more separable spec-

tral functions, such as the trace of the inverse, exponential, and more power functions.
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These two contributions enable efficient and numerically stable implementations of

the MMD cone and the log-determinant and root-determinant cones in nonsymmetric

conic PDIPMs. We define these cones through Hypatia’s cone interface. Our MMD

cone implementation is parametrized by both a Jordan algebra domain and an MMD

function, allowing the user to define new domains and MMD functions. An MMD

function is easily specified by implementing a small set of oracles for its univariate

form: the function itself, its first three derivatives, and its convex conjugate, as well as

an interior point for the corresponding MMD cone. We predefine five common MMD

functions and three typical Jordan algebra domains: the real vectors, real symmetric

matrices, and complex Hermitian matrices.

We use these new spectral cones in Hypatia to formulate example problems from

distribution estimation, experiment design, quantum information science, and poly-

nomial optimization. The natural formulations (NFs) using these cones are simpler

and smaller than equivalent EFs written in terms of the handful of standard cones

recognized by either ECOS or MOSEK 9 (i.e. the common symmetric cones and the

three-dimensional exponential and power cones). Our computational experiments

demonstrate that, across a wide range of sizes and spectral functions, Hypatia can

solve the NFs faster than Hypatia, MOSEK, or ECOS can solve the equivalent EFs.

Furthermore, to illustrate the practical impact of our efficient oracle procedures, we

show that our closed-form formula for the MMD cone inverse Hessian product is faster

and more numerically reliable than a naive direct solve using an explicit Hessian fac-

torization.

3.1.1 Chapter overview

We describe relevant aspects of Euclidean Jordan algebras, cones of squares, and

spectral decompositions in Section 3.2. In Section 3.3, we define spectral functions

on Euclidean Jordan algebras and give expressions for gradients and second and third

order directional derivatives of spectral functions. We also specialize these formulae

for separable spectral functions and the log-determinant case.

In Section 3.4, we define spectral function cones (and their dual cones) from
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epigraphs of homogenized convex spectral functions on cones of squares. We propose

simple logarithmically homogeneous barriers for these cones and describe the addi-

tional properties that must be satisfied by an LHSCB. We also define several barrier

oracles needed by Hypatia’s PDIPM. Then in Section 3.5, we describe fast and nu-

merically stable procedures for these barrier oracles, using the derivative results from

Section 3.3. We specialize the oracle procedures for cones defined from separable

spectral functions and the log-determinant function.

In Section 3.6, we define the MMD cone and its dual cone, and we give useful

examples of MMD functions. We show that for the MMD cone, our barrier function

is an LHSCB. In Section 3.7, we define the root-determinant cone and its dual cone,

prove that our barrier is an LHSCB, and derive efficient oracle procedures. Finally, in

Section 3.8, we describe a series of applied examples over the new root-determinant,

log-determinant, and MMD cones and their dual cones. We perform computational

testing to demonstrate the advantages of solving these NFs with Hypatia and to

exemplify the impact of efficient oracle procedures.

3.2 Jordan algebras

Jordan algebraic concepts provide a useful and straightforward abstraction for spec-

tral functions, cones, and our barrier results in later sections. We follow the notation

of Faraut and Koranyi [1998, Chapter 2] where possible.

An algebra over the real or complex numbers is a vector space 𝑉 equipped with a

bilinear product ∘ : 𝑉 × 𝑉 → 𝑉 . For 𝑤 ∈ 𝑉 , 𝑤2 := 𝑤 ∘𝑤. We refer to 𝑉 as a Jordan

algebra if for all 𝑤𝑎, 𝑤𝑏 ∈ 𝑉 :

𝑤𝑎 ∘ 𝑤𝑏 = 𝑤𝑏 ∘ 𝑤𝑎, (3.1a)

𝑤𝑎 ∘ (𝑤2
𝑎 ∘ 𝑤𝑏) = 𝑤2

𝑎 ∘ (𝑤𝑎 ∘ 𝑤𝑏). (3.1b)

For example, for 𝑉 = R𝑑, we can define ∘ as an elementwise multiplication, or for

𝑉 = S𝑑 and 𝑉 = H𝑑, we can let 𝑤𝑎 ∘ 𝑤𝑏 =
1
2
(𝑤𝑎𝑤𝑏 + 𝑤𝑏𝑤𝑎).
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Given 𝑤𝑎 ∈ 𝑉 , we define the linear map 𝐿(𝑤𝑎) : 𝑉 → 𝑉 satisfying:

𝐿(𝑤𝑎)𝑤𝑏 = 𝑤𝑎 ∘ 𝑤𝑏 ∀𝑤𝑏 ∈ 𝑉. (3.2)

Given 𝑤 ∈ 𝑉 , we define the linear map 𝑃 (𝑤) : 𝑉 → 𝑉 satisfying:

𝑃 (𝑤) = 2𝐿(𝑤)2 − 𝐿(𝑤2). (3.3)

𝑃 is called the quadratic representation of 𝑉 . In general, 𝑃 (𝑤) ̸= 𝐿(𝑤)2 ̸= 𝐿(𝑤2)

because ∘ need not be associative. For example, for 𝑉 = S𝑑, we have 𝐿(𝑤2
𝑎)𝑤𝑏 =

1
2
(𝑤2

𝑎𝑤𝑏 + 𝑤𝑏𝑤
2
𝑎), 𝐿(𝑤𝑎)

2𝑤𝑏 =
1
2
(𝐿(𝑤2

𝑎)𝑤𝑏 + 𝑤𝑎𝑤𝑏𝑤𝑎), and 𝑃 (𝑤𝑎)𝑤𝑏 = 𝑤𝑎𝑤𝑏𝑤𝑎.

For any positive integer 𝑘, we have [Vieira, 2007, Corollary 2.3.9]:

𝑃 (𝑤)𝑘 = 𝑃 (𝑤𝑘). (3.4)

It is standard to assume the existence of a multiplicative identity 𝑒 (unlike all other

chapters, here 𝑒 is not just a vector of ones). Note that 𝑃 (𝑤)𝑒 = 𝑤2. A point 𝑤 ∈ 𝑉

is invertible if and only if 𝐿(𝑤) is invertible, and the inverse of 𝑤 is the element

𝑤−1 ∈ 𝑉 such that 𝑤−1 = 𝐿(𝑤)−1𝑒 [Faraut and Koranyi, 1998, Proposition II.2.2].

(3.4) also holds for 𝑘 = −1 if 𝑤 is invertible [Faraut and Koranyi, 1998, Proposition

II.3.1].

Henceforth we consider only the finite dimensional Euclidean Jordan algebras. A

Jordan algebra 𝑉 is Euclidean if ⟨𝑤𝑎 ∘ 𝑤𝑏, 𝑤𝑐⟩ = ⟨𝑤𝑏, 𝑤𝑎 ∘ 𝑤𝑐⟩ for all 𝑤𝑎, 𝑤𝑏, 𝑤𝑐 ∈ 𝑉 .

We call 𝒬 a cone of squares on 𝑉 if 𝒬 = {𝑤 ∘ 𝑤 : 𝑤 ∈ 𝑉 }. The cone 𝒬 is proper

(closed, convex, pointed, and solid) because 𝑉 is Euclidean (and therefore formally

real); see Papp and Alizadeh [2013, Theorem 3.3] and Faraut and Koranyi [1998,

Section III.1 and Proposition VIII.4.2]. In addition, 𝒬 is self-dual and homogeneous ;

see Vieira [2007, Proposition 2.5.8] and Faraut and Koranyi [1998, Theorem III.2.1].

For example, for 𝑉 = S𝑑, the cone of squares is 𝒬 = S𝑑
⪰.

For convenience, we often write 𝑎 ⪰ 𝑏 instead of 𝑎 − 𝑏 ∈ 𝒬, or 𝑎 ≻ 𝑏 instead

of 𝑎 − 𝑏 ∈ int(𝒬), where 𝒬 is clear from context. If 𝑤 ≻ 0, then 𝑤 is invertible
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[Faraut and Koranyi, 1998, Theorem III.2.1]. Furthermore 𝑤 ≻ 0 implies that 𝑤1/2 is

well-defined and invertible, and 𝑃 (𝑤1/2) = 𝑃 (𝑤)1/2 Vieira [2007, Proposition 2.5.11].

This also implies by (3.4) (with 𝑘 = −1) that 𝑃 (𝑤−1/2) = 𝑃 (𝑤)−1/2.

3.2.1 Spectral decomposition

In a Euclidean Jordan algebra 𝑉 , an idempotent is an element 𝑐 ∈ 𝑉 such that 𝑐2 = 𝑐.

Two idempotents 𝑐1, 𝑐2 are orthogonal if 𝑐1∘𝑐2 = 0. Let 𝑑 be the rank of 𝑉 . 𝑐1, . . . , 𝑐𝑑 is

a complete system of orthogonal idempotents if 𝑐1, . . . , 𝑐𝑑 are all idempotents, pairwise

orthogonal, and
∑︀

𝑖∈J𝑑K 𝑐𝑖 = 𝑒. An idempotent is primitive if it is non-zero and cannot

be written as the sum of two orthogonal non-zero idempotents. A Jordan frame is

a complete system of orthogonal idempotents, where each idempotent is primitive.

The number of elements in any Jordan frame is called the rank of 𝑉 . For example,

the rank of R𝑑, S𝑑, or H𝑑 is 𝑑.

For any 𝑤 ∈ 𝑉 , there exist unique real numbers (not necessarily distinct) 𝑤1, . . . , 𝑤𝑑

and a unique Jordan frame 𝑐1, . . . , 𝑐𝑑 such that 𝑤 has the spectral decomposition [Fa-

raut and Koranyi, 1998, Theorem III.1.2]:

𝑤 =
∑︁
𝑖∈J𝑑K

𝑤𝑖𝑐𝑖. (3.5)

We call 𝑤1, . . . , 𝑤𝑑 the eigenvalues of 𝑤. The determinant is det(𝑤) =
∏︀

𝑖∈J𝑑K 𝑤𝑖 and

the trace is tr(𝑤) =
∑︀

𝑖∈J𝑑K 𝑤𝑖 [Faraut and Koranyi, 1998, Section II.2, page 29]. For

example, for 𝑉 = R𝑑, the Jordan frame is the standard unit vectors and 𝑤 is its own

vector of eigenvalues. For 𝑉 = S𝑑, we can think of the Jordan frame as the rank one

PSD matrices from a full symmetric eigendecomposition.

Henceforth, we define the inner product on 𝑉 as ⟨𝑤𝑎, 𝑤𝑏⟩ = tr(𝑤𝑎 ∘ 𝑤𝑏). Under

this inner product, 𝑃 (𝑤) is self-adjoint [Vieira, 2007, Page 27]. Thus for 𝑤 ∈ int(𝒬)

and 𝑟1, 𝑟2 ∈ 𝑉 , we have:

⟨𝑃 (𝑤)𝑟1, 𝑟2⟩ = ⟨𝑃 (𝑤1/2)𝑟1, 𝑃 (𝑤1/2)𝑟2⟩ = ⟨𝑟1, 𝑃 (𝑤)𝑟2⟩. (3.6)
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3.2.2 Peirce decomposition

We let 𝑐1, . . . , 𝑐𝑑 be any Jordan frame in 𝑉 , and define for 𝑖, 𝑗 ∈ J𝑑K:

𝑉 (𝑐𝑖, 𝜆) := {𝑤 : 𝑐𝑖 ∘ 𝑤 = 𝜆𝑤}, (3.7a)

𝑉𝑖,𝑖 := 𝑉 (𝑐𝑖, 1) = {𝑡𝑐𝑖 : 𝑡 ∈ R}, (3.7b)

𝑉𝑖,𝑗 := 𝑉 (𝑐𝑖,
1
2
) ∩ 𝑉 (𝑐𝑗,

1
2
). (3.7c)

𝑉 has the direct sum decomposition 𝑉 = ⊕𝑖,𝑗∈J𝑑K:𝑖≤𝑗𝑉𝑖,𝑗 [Faraut and Koranyi, 1998,

Theorem IV.1.3]. For example, for 𝑉 = S𝑑, let 𝐸𝑖,𝑗 be a matrix of zeros except in the

(𝑖, 𝑗)th position, and let 𝑐𝑖 = 𝐸𝑖,𝑖; then 𝑉𝑖,𝑖 = {𝑡𝐸𝑖,𝑖 : 𝑡 ∈ R} and 𝑉𝑖,𝑗 = {𝑡(𝐸𝑖,𝑗+𝐸𝑗,𝑖) :

𝑡 ∈ R}.

The Peirce decomposition allows us to write any 𝑟 ∈ 𝑉 as:

𝑟 =
∑︁

𝑖,𝑗∈J𝑑K:𝑖≤𝑗

𝑟𝑖,𝑗 =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

𝑟𝑖,𝑗 +
∑︁
𝑖∈J𝑑K

𝑟𝑖𝑐𝑖, (3.8)

where 𝑟𝑖 = ⟨𝑟, 𝑐𝑖⟩ ∈ R and 𝑟𝑖,𝑗 ∈ 𝑉𝑖,𝑗 for all 𝑖, 𝑗 ∈ J𝑑K. Each 𝑟𝑖,𝑗 is a projection of 𝑟

onto 𝑉𝑖,𝑗, where:

𝑟𝑖,𝑖 = 𝑟𝑖𝑐𝑖 = 𝑃 (𝑐𝑖)𝑟 ∀𝑖 ∈ J𝑑K, (3.9a)

𝑟𝑖,𝑗 = 4𝐿(𝑐𝑖)𝐿(𝑐𝑗)𝑟 = 4𝑐𝑖 ∘ (𝑐𝑗 ∘ 𝑟) ∀𝑖, 𝑗 ∈ J𝑑K : 𝑗 ̸= 𝑖. (3.9b)

Note that 𝑟𝑖,𝑗 = 𝑟𝑗,𝑖, since 𝐿(𝑐𝑖) and 𝐿(𝑐𝑗) commute [Faraut and Koranyi, 1998,

Lemma IV.1.3]. For example, let 𝑐1, . . . , 𝑐𝑑 be a Jordan frame for 𝑉 = S𝑑 and let

𝑟 ∈ 𝑉 ; then 𝑟𝑖 = 𝑐𝑖𝑟𝑐𝑖 and 𝑟𝑖,𝑗 = 𝑐𝑖𝑟𝑐𝑗 + 𝑐𝑗𝑟𝑐𝑖, for 𝑖, 𝑗 ∈ J𝑑K.

We list some facts relating to compositions of projection operators (see Faraut
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and Koranyi [1998, Theorem IV.2.2] and Sun and Sun [2008, page 430]):

𝐿(𝑐𝑖)𝐿(𝑐𝑗)𝐿(𝑐𝑘)𝐿(𝑐𝑙) = 0 ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ J𝑑K : 𝑖 ̸= 𝑗, 𝑘 ̸= 𝑙, (𝑖, 𝑗) ̸= (𝑘, 𝑙), (3.10a)

𝐿(𝑐𝑖)𝐿(𝑐𝑗)𝑃 (𝑐𝑘) = 𝑃 (𝑐𝑘)𝐿(𝑐𝑖)𝐿(𝑐𝑗) = 0 ∀𝑖, 𝑗, 𝑘 ∈ J𝑑K : 𝑖 ̸= 𝑗, (3.10b)

(4𝐿(𝑐𝑖)𝐿(𝑐𝑗))
2 = 4𝐿(𝑐𝑖)𝐿(𝑐𝑗) ∀𝑖, 𝑗 ∈ J𝑑K, (3.10c)

𝑃 (𝑐𝑖)
2 = 𝑃 (𝑐𝑖) ∀𝑖 ∈ J𝑑K, (3.10d)∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝐿(𝑐𝑖)𝐿(𝑐𝑗) +
∑︁
𝑖∈J𝑑K

𝑃 (𝑐𝑖) = 𝐿(𝑒). (3.10e)

Given 𝜆𝑖,𝑗 ̸= 0 ∈ R for 𝑖, 𝑗 ∈ J𝑑K, consider an operator Λ : 𝑉 → 𝑉 of the form:

Λ :=
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝜆𝑖,𝑗𝐿(𝑐𝑖)𝐿(𝑐𝑗) +
∑︁
𝑖∈J𝑑K

𝜆𝑖,𝑖𝑃 (𝑐𝑖). (3.11)

The inverse operator Λ−1 is given by:

Λ−1 =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝜆−1
𝑖,𝑗 𝐿(𝑐𝑖)𝐿(𝑐𝑗) +

∑︁
𝑖∈J𝑑K

𝜆−1
𝑖,𝑖 𝑃 (𝑐𝑖). (3.12)

It can be verified using (3.10) that for any 𝑟 ∈ 𝑉 , ΛΛ−1𝑟 = Λ−1Λ𝑟 = 𝑟. For example,

let 𝑤 =
∑︀

𝑖∈J𝑑K 𝑤𝑖𝑐𝑖 ∈ 𝑉 be invertible and suppose that 𝜆𝑖,𝑗 = 𝑤𝑖𝑤𝑗 for 𝑖, 𝑗 ∈ J𝑑K;

then:

Λ =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝑤𝑖𝑤𝑗𝐿(𝑐𝑖)𝐿(𝑐𝑗) +
∑︁
𝑖∈J𝑑K

𝑤2
𝑖𝑃 (𝑐𝑖) = 𝑃 (𝑤), (3.13a)

Λ−1 =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝑤−1
𝑖 𝑤−1

𝑗 𝐿(𝑐𝑖)𝐿(𝑐𝑗) +
∑︁
𝑖∈J𝑑K

𝑤−2
𝑖 𝑃 (𝑐𝑖) = 𝑃 (𝑤−1). (3.13b)

3.3 Spectral functions and derivatives

Let 𝑉 be a Jordan algebra of rank 𝑑. A real-valued function 𝑓 : R𝑑 → R is symmetric

if it is invariant to the order of its inputs. A symmetric function 𝑓 composed with

an eigenvalue map 𝜆 : 𝑉 → R𝑑 induces a spectral function 𝜙 : 𝑉 → R such that

𝜙(𝑤) = 𝑓(𝜆(𝑤)), where 𝜆(𝑤) = (𝑤1, . . . , 𝑤𝑑) is the eigenvalue vector of 𝑤 [Baes,
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2007, Definition 8]. Note that 𝜙 is convex if and only if 𝑓 is convex [Davis, 1957].

In this section, we give expressions for certain derivatives and directional deriva-

tives of 𝜙 that are useful for the barrier oracles we derive in Section 3.5. We express

these derivatives at a point 𝑤 ∈ 𝑉 (satisfying certain assumptions as necessary be-

low) with spectral decomposition (3.5), and we let the direction be 𝑟 ∈ 𝑉 with

Peirce decomposition (3.8). The gradient is ∇𝜙(𝑤) ∈ 𝑉 and the second and third

order directional derivatives are ∇2𝜙(𝑤)[𝑟] ∈ 𝑉 and ∇3𝜙(𝑤)[𝑟, 𝑟] ∈ 𝑉 . We begin

with the general nonseparable case in Section 3.3.1 before specializing for separable

spectral functions in Section 3.3.2 and finally for the important case of the negative

log-determinant function in Section 3.3.3.

3.3.1 The nonseparable case

Let ∇𝑓 , ∇2𝑓 , and ∇3𝑓 denote the derivatives of 𝑓 evaluated at 𝜆(𝑤). We use

subindices to denote particular components of these derivatives. According to Baes

[2007, Theorem 38] and Sun and Sun [2008, Theorem 4.1], the gradient of 𝜙 at 𝑤 is:

∇𝜙(𝑤) =
∑︁
𝑖∈J𝑑K

(∇𝑓)𝑖𝑐𝑖. (3.14)

Henceforth we assume the eigenvalues of 𝑤 are all distinct for simplicity. The second

order directional derivative of 𝜙 in direction 𝑟 is [Sun and Sun, 2008, Theorem 4.2]:

∇2𝜙(𝑤)[𝑟] =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

(∇𝑓)𝑖 − (∇𝑓)𝑗
𝑤𝑖 − 𝑤𝑗

𝑟𝑖,𝑗 +
∑︁

𝑖,𝑗∈J𝑑K

(∇2𝑓)𝑖,𝑗𝑟𝑖𝑐𝑗. (3.15)

Sun and Sun [2008, Theorem 4.2] also generalize this expression to allow for non-

distinct eigenvalues.

To derive an expression for the third order directional derivative ∇3𝜙(𝑤)[𝑟, 𝑟], we

let:

𝑤(𝑡) := 𝑤 + 𝑡𝑟 =
∑︁
𝑖∈J𝑑K

𝑤𝑖(𝑡)𝑐𝑖(𝑡), (3.16)

where 𝑤𝑖(𝑡) is the 𝑖th eigenvalue of 𝑤(𝑡). Note that ∇2𝜙(𝑤)[𝑟] = d
d 𝑡
∇𝜙(𝑤(𝑡))|𝑡=0
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and ∇3𝜙(𝑤)[𝑟, 𝑟] = d2

d 𝑡2
∇𝜙(𝑤(𝑡))|𝑡=0. We let ∇𝑓(𝑡), ∇2𝑓(𝑡), and ∇3𝑓(𝑡) denote the

derivatives of 𝑓 evaluated at 𝜆(𝑤(𝑡)). Due to the chain rule and (3.15):

d

d 𝑡
∇𝜙(𝑤(𝑡)) = ∇2𝜙(𝑤(𝑡))[𝑟] (3.17a)

=
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

(∇𝑓(𝑡))𝑖 − (∇𝑓(𝑡))𝑗
𝑤𝑖(𝑡)− 𝑤𝑗(𝑡)

𝑟𝑖,𝑗(𝑡) +
∑︁

𝑖,𝑗∈J𝑑K

(∇2𝑓(𝑡))𝑖,𝑗𝑟𝑖(𝑡)𝑐𝑗(𝑡). (3.17b)

We differentiate (3.17) once more. From Vieira [2016, Corollary 1 and Theorem 3.3]

and Sun and Sun [2008, Equation 37], for 𝑖 ∈ J𝑑K we have:

d

d 𝑡
𝑤𝑖(𝑡) = 𝑟𝑖(𝑡), (3.18a)

d

d 𝑡
𝑐𝑖(𝑡) = 𝑠𝑖(𝑡) :=

∑︁
𝑗∈J𝑑K:𝑗 ̸=𝑖

𝑟𝑖,𝑗(𝑡)

𝑤𝑖(𝑡)− 𝑤𝑗(𝑡)
. (3.18b)

Using the chain rule, (3.18a) implies:

d

d 𝑡
(∇𝑓(𝑡))𝑖 =

∑︁
𝑘∈J𝑑K

(∇2𝑓(𝑡))𝑖,𝑘𝑟𝑘(𝑡) ∀𝑖 ∈ J𝑑K, (3.19a)

d

d 𝑡
(∇2𝑓(𝑡))𝑖,𝑗 =

∑︁
𝑘∈J𝑑K

(∇3𝑓(𝑡))𝑖,𝑗,𝑘𝑟𝑘(𝑡) ∀𝑖, 𝑗 ∈ J𝑑K. (3.19b)

Applying the chain and product rules, we have:

d

d 𝑡

1

𝑤𝑖(𝑡)− 𝑤𝑗(𝑡)
=

𝑟𝑗(𝑡)− 𝑟𝑖(𝑡)

(𝑤𝑖(𝑡)− 𝑤𝑗(𝑡))2
∀𝑖, 𝑗 ∈ J𝑑K : 𝑖 ̸= 𝑗, (3.20a)

d

d 𝑡
𝑟𝑖,𝑗(𝑡) =

d

d 𝑡
(4𝑐𝑖(𝑡) ∘ (𝑐𝑗(𝑡) ∘ 𝑟)) (3.20b)

= 4𝑐𝑖(𝑡) ∘ (𝑠𝑗(𝑡) ∘ 𝑟) + 4𝑠𝑖(𝑡) ∘ (𝑐𝑗(𝑡) ∘ 𝑟) ∀𝑖, 𝑗 ∈ J𝑑K : 𝑖 ̸= 𝑗, (3.20c)
d

d 𝑡
⟨𝑐𝑖(𝑡), 𝑟⟩𝑐𝑗(𝑡) = ⟨𝑠𝑖(𝑡), 𝑟⟩𝑐𝑗(𝑡) + 𝑟𝑖(𝑡)𝑠𝑗(𝑡) ∀𝑖, 𝑗 ∈ J𝑑K. (3.20d)
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Finally, letting 𝑠𝑖 := 𝑠𝑖(0) for all 𝑖 ∈ J𝑑K, these results imply that:

∇3𝜙[𝑟, 𝑟] =
d2

d 𝑡2
∇𝜙(𝑤(𝑡))

⃒⃒
𝑡=0

(3.21a)

=
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

(∇𝑓)𝑖 − (∇𝑓)𝑗
𝑤𝑖 − 𝑤𝑗

(︂
4𝑐𝑖 ∘ (𝑠𝑗 ∘ 𝑟) + 4𝑠𝑖 ∘ (𝑐𝑗 ∘ 𝑟)−

𝑟𝑖 − 𝑟𝑗
𝑤𝑖 − 𝑤𝑗

𝑟𝑖,𝑗

)︂
+

∑︁
𝑖,𝑗,𝑘∈J𝑑K:𝑖<𝑗

(∇2𝑓)𝑖,𝑘 − (∇2𝑓)𝑗,𝑘
𝑤𝑖 − 𝑤𝑗

𝑟𝑘𝑟𝑖,𝑗 +

∑︁
𝑖,𝑗∈J𝑑K

(∇2𝑓)𝑖,𝑗(⟨𝑠𝑖, 𝑟⟩𝑐𝑗 + 𝑟𝑖𝑠𝑗) +
∑︁

𝑖,𝑗,𝑘∈J𝑑K

(∇3𝑓)𝑖,𝑗,𝑘𝑟𝑖𝑟𝑘𝑐𝑗

(3.21b)

=
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

(∇𝑓)𝑖 − (∇𝑓)𝑗
𝑤𝑖 − 𝑤𝑗

(︂
4𝑐𝑖 ∘ (𝑠𝑗 ∘ 𝑟) + 4𝑠𝑖 ∘ (𝑐𝑗 ∘ 𝑟)−

𝑟𝑖 − 𝑟𝑗
𝑤𝑖 − 𝑤𝑗

𝑟𝑖,𝑗

)︂
+

∑︁
𝑖,𝑗∈J𝑑K

(∇2𝑓)𝑖,𝑗(2𝑟𝑗𝑠𝑖 + ⟨𝑠𝑖, 𝑟⟩𝑐𝑗) +
∑︁

𝑖,𝑗,𝑘∈J𝑑K

(∇3𝑓)𝑖,𝑗,𝑘𝑟𝑖𝑟𝑘𝑐𝑗.

(3.21c)

The derivative expressions simplify significantly for 𝑉 = R𝑑. For 𝑉 = S𝑑, the

form of (3.15) is well-known [Faybusovich and Zhou, 2021] and the form of (3.21c)

appears in Sendov [2007].

3.3.2 The separable case

The spectral function 𝜙 induced by 𝑓 is separable if 𝑓 is a separable function, i.e.

𝑓(𝜆) =
∑︀

𝑖∈J𝑑K ℎ(𝜆𝑖) for 𝜆 ∈ R𝑑 and some function ℎ : R → R. For convenience, if

𝑤 ∈ 𝑉 , we also define ℎ : 𝑉 → 𝑉 as ℎ(𝑤) :=
∑︀

𝑖∈J𝑑K ℎ(𝑤𝑖)𝑐𝑖. This allows us to write

𝜙(𝑤) = tr(ℎ(𝑤)) =
∑︀

𝑖∈J𝑑K ℎ(𝜆𝑖). Note that 𝜙 is convex if and only if ℎ is convex. For

example, if ℎ(𝑤) = − log(𝑤) then 𝜙(𝑤) = tr(− log(𝑤)) = − logdet(𝑤); we consider

this special case in Section 3.3.3.

We specialize the derivatives from (3.14), (3.15) and (3.21c), maintaining the

simplifying assumption of distinct eigenvalues. Since (∇2𝑓)𝑖,𝑗 = (∇3𝑓)𝑖,𝑗,𝑘 = 0 unless
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𝑖 = 𝑗 = 𝑘, we have:

∇𝜙(𝑤) =
∑︁
𝑖∈J𝑑K

∇ℎ(𝑤𝑖)𝑐𝑖, (3.22a)

∇2𝜙(𝑤)[𝑟] =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

∇ℎ(𝑤𝑖)−∇ℎ(𝑤𝑗)

𝑤𝑖 − 𝑤𝑗

4𝑐𝑖 ∘ (𝑐𝑗 ∘ 𝑟) +
∑︁
𝑖∈J𝑑K

∇2ℎ(𝑤𝑖)𝑃 (𝑐𝑖)𝑟, (3.22b)

∇3𝜙(𝑤)[𝑟, 𝑟] = (3.22c)∑︁
𝑖,𝑗∈J𝑑K:𝑖<𝑗

∇ℎ(𝑤𝑖)−∇ℎ(𝑤𝑗)

𝑤𝑖 − 𝑤𝑗

(︂
4𝑐𝑖 ∘ (𝑠𝑗 ∘ 𝑟) + 4𝑠𝑖 ∘ (𝑐𝑗 ∘ 𝑟)−

𝑟𝑖 − 𝑟𝑗
𝑤𝑖 − 𝑤𝑗

𝑟𝑖,𝑗

)︂
+ (3.22d)

∑︁
𝑖∈J𝑑K

∇2ℎ(𝑤𝑖)(2𝑟𝑖𝑠𝑖 + ⟨𝑠𝑖, 𝑟⟩𝑐𝑖) +
∑︁
𝑖∈J𝑑K

∇3ℎ(𝑤𝑖)𝑟
2
𝑖 𝑐𝑖. (3.22e)

3.3.3 The negative log-determinant case

The negative log-determinant function 𝜙(𝑤) = − logdet(𝑤) is a separable spectral

function. We let 𝑤 ≻ 0 and drop the assumption of distinct eigenvalues. For conve-

nience, we let 𝑟 := 𝑃 (𝑤−1/2)𝑟 ∈ 𝑉 . First, note that (similar to Vieira [2007, Lemma

3.3.4]):

⟨𝑤−1, 𝑟⟩ = ⟨𝑃 (𝑤−1/2)𝑒, 𝑟⟩ 3.6
= ⟨𝑒, 𝑃 (𝑤−1/2)𝑟⟩ = tr(𝑟). (3.23)

Due to Faraut and Koranyi [1998, Proposition II.2.3]:

∇𝑤(tr(𝑟)) = ∇𝑤(𝑤
−1)[𝑟] = −𝑃 (𝑤−1)𝑟. (3.24)

Adapting the result in Faybusovich and Tsuchiya [2017, Lemma 3.4]:

∇𝑤(𝑃 (𝑤−1)𝑟)[𝑟] = −2𝑃 (𝑤−1/2)𝑟2. (3.25)
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Now, the gradient of 𝜙 is [Faraut and Koranyi, 1998, Propositions III.4.2(ii)]:

∇𝜙(𝑤) = −𝑤−1, (3.26)

so the second and third order directional derivatives are:

∇2𝜙(𝑤)[𝑟]
3.24
= 𝑃 (𝑤−1)𝑟, (3.27a)

∇3𝜙(𝑤)[𝑟, 𝑟]
3.25
= −2𝑃 (𝑤−1/2)(𝑃 (𝑤−1/2)𝑟)2. (3.27b)

Note that unlike the separable spectral function case in Section 3.3.2, here we do not

need the explicit eigenvalues of 𝑤.

3.4 Cones and barrier functions

In this chapter we are concerned with a class of proper cones that can be characterized

as follows:

𝒦 := cl{𝑢̃ ∈ ℰ : 𝜁(𝑢̃) ≥ 0} ⊂ 𝑉 , (3.28)

where 𝜁 : ℰ → R is a concave, (degree one) homogeneous function and ℰ is some

convex cone in the space 𝑉 . In particular, we define 𝜁 in terms of a 𝐶3-smooth

spectral function 𝜙 that is defined on the interior of a cone of squares 𝒬 of a Jordan

algebra 𝑉 of rank 𝑑.

3.4.1 The homogeneous case

First, we suppose that 𝜙 is convex and homogeneous. Then 𝜁(𝑢,𝑤) := 𝑢 − 𝜙(𝑤) is

concave and homogeneous, and we let ℰ := R× int(𝒬) and 𝑉 := R× 𝑉 . This defines

a convex cone that is the closure of the epigraph set of 𝜙:

𝒦ℎ := cl{(𝑢,𝑤) ∈ R× int(𝒬) : 𝑢 ≥ 𝜙(𝑤)}. (3.29)
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Note that if 𝜙 is concave, we can analogously define a cone from the hypograph set

of 𝜙. In Section 3.7, we consider the root-determinant cone, which is the hypograph

of the concave root-determinant function. To check membership in int(𝒦ℎ), we first

determine whether 𝑤 ∈ int(𝒬) (which is equivalent to positivity of the eigenvalues),

and if so, whether 𝜁(𝑢̃) > 0.

3.4.2 The non-homogeneous case

Now we suppose that 𝜙 is convex and non-homogeneous. We define the perspective

function of 𝜙, per𝜙 : R> × int(𝒬) → R, as (per𝜙)(𝑣, 𝑤) := 𝑣𝜙(𝑣−1𝑤). This is a

homogeneous and convex function [Boyd and Vandenberghe, 2004, Section 3.2.6]. We

let 𝜁(𝑢, 𝑣, 𝑤) := 𝑢 − (per𝜙)(𝑣, 𝑤), with ℰ := R × R> × int(𝒬) and 𝑉 := R × R × 𝑉 .

This defines a convex cone that is the closure of the epigraph set of the perspective

function of 𝜙:

𝒦𝑝 := cl{(𝑢, 𝑣, 𝑤) ∈ R× R> × int(𝒬) : 𝑢 ≥ 𝑣𝜙(𝑣−1𝑤)}. (3.30)

Equivalently, we can view 𝒦𝑝 as the closed conic hull of the epigraph set of 𝜙 [Nesterov

and Nemirovskii, 1994, Chapter 5]. In Section 3.6, we consider the special case where

𝜙 is a separable spectral function with matrix monotone first derivative. The mem-

bership check for int(𝒦𝑝) is similar to that of int(𝒦ℎ) except we first check whether

𝑣 > 0.

3.4.3 Dual cones

Recall the definition for the dual cone 𝒦* of a cone 𝒦 from (1.2). When 𝒦 is de-

fined through Hypatia’s generic cone interface, both 𝒦 and 𝒦* become available for

constructing conic models.

We assume that 𝜙 is convex, and we derive the dual cones of the epigraph cones 𝒦ℎ

and 𝒦𝑝 (these steps can be adapted for analogous hypograph cones if 𝜙 is concave).

The convex conjugate function 𝜙* : 𝑉 → R ∪ ∞ of 𝜙 is defined as in (1.4). The

conjugate of a symmetric function is also a symmetric function [Baes, 2007, Lemma
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29], and the conjugate of a spectral function induced by a symmetric function 𝑓 is the

spectral function induced by 𝑓 * [Baes, 2007, Theorem 30]. Thus for 𝜙(𝑤) = 𝑓(𝜆(𝑤))

we have the conjugate function 𝜙*(𝑤) = 𝑓 *(𝜆(𝑤)).

For the epigraph-perspective cone 𝒦𝑝 in (3.30), Zhang [2004, Theorem 3.2] and

Rockafellar [2015, Theorem 14.4] derive the dual cone 𝒦*
𝑝:

𝒦*
𝑝 = cl{(𝑢, 𝑣, 𝑤) ∈ R> × R× 𝑉 : 𝑣 ≥ 𝑢𝜙*(𝑢−1𝑤)}. (3.31)

We can view 𝒦*
𝑝 as the epigraph set of the perspective function of the conjugate of

𝜙, but with the epigraph and perspective components swapped (compare to (3.30)).

Depending on the natural domain of 𝜙*, the 𝑤 component of 𝒦*
𝑝 is not necessarily

restricted to lie in 𝒬; in Section 3.6.2 we discuss several example spectral functions,

some of which have conjugates defined on all 𝑉 and others only on int(𝒬).

For 𝒦ℎ in (3.29), we derive the dual cone 𝒦*
ℎ as follows. Since 𝜙 is homogeneous in

this case, (per𝜙)(𝑣, 𝑤) = 𝑣𝜙(𝑣−1𝑤) = 𝜙(𝑤). Therefore the corresponding perspective

cone 𝒦𝑝 for 𝜙 is not a primitive cone, as it can be written as a (permuted) Cartesian

product of R≥ and 𝒦ℎ:

𝒦𝑝 = cl{(𝑢, 𝑣, 𝑤) ∈ 𝑉 : 𝑣 ∈ R≥, (𝑢,𝑤) ∈ 𝒦ℎ}. (3.32)

Since the dual cone of a Cartesian product of cones is the Cartesian product of their

dual cones, we have (since R*
≥ = R≥):

𝒦*
𝑝 = cl{(𝑢, 𝑣, 𝑤) ∈ 𝑉 : 𝑣 ∈ R≥, (𝑢,𝑤) ∈ 𝒦*

ℎ}. (3.33)

By [Lasserre, 1998, Theorem 2.1], the homogeneity of 𝜙 implies that 𝜙* can only take

the values zero or infinity. Hence by (3.31), we know:

𝒦*
𝑝 = cl{(𝑢, 𝑣, 𝑤) ∈ R> × R× 𝑉 : 𝑣 ≥ 0, 𝑢𝜙*(𝑢−1𝑤) <∞}. (3.34)

Since (3.33) and (3.34) describe the same cone, we can conclude that the dual cone
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of 𝒦ℎ is:

𝒦*
ℎ = cl{(𝑢,𝑤) ∈ R> × 𝑉 : 𝜙*(𝑢−1𝑤) <∞}. (3.35)

3.4.4 Barrier functions and oracles

Recall that a logarithmically homogeneous barrier (LHB) function Γ for a proper

cone 𝒦 ⊂ 𝑉 is 𝐶2-smooth and satisfies Γ(𝑢̃𝑖)→∞ along every sequence 𝑢̃𝑖 ∈ int(𝒦)

converging to the boundary of 𝒦, and:

Γ(𝜃𝑢̃) = Γ(𝑢̃)− 𝜈 log(𝜃) ∀𝑢̃ ∈ int(𝒦), 𝜃 ∈ R+, (3.36)

for some 𝜈 ≥ 0 [Nesterov and Nemirovskii, 1994, Definition 2.3.2]. If Γ is also self-

concordant, then it is an LHSCB with parameter 𝜈 ≥ 1 (or a 𝜈-LHSCB) for 𝒦, which

we define in (1.3).

The LHB we consider for a cone of the form (3.28) is:

Γ(𝑢̃) := − log(𝜁(𝑢̃)) + Ψ(𝑢̃), (3.37)

where Ψ can be thought of as an LHSCB for the domain of 𝜁 or cl(ℰ). The negative

logarithm function − log is the standard LHSCB for R≥, with parameter 𝜈 = 1.

Similarly, the spectral function − logdet (see Section 3.3.3) is the standard LHSCB

for a cone of squares 𝒬 of 𝑉 , with 𝜈 = 𝑑 (the rank of 𝑉 ). For 𝒦ℎ we let Ψ(𝑢̃) =

− logdet(𝑤), hence Γ has parameter 𝜈 = 1 + 𝑑. Since an LHSCB for a Cartesian

product of cones is the sum of LHSCBs for the primitive cones, for 𝒦𝑝 we let Ψ(𝑢̃) =

− log(𝑣) − logdet(𝑤), hence Γ has parameter 𝜈 = 2 + 𝑑. Note that although Γ is an

LHB, it is not necessarily self-concordant; in Sections 3.6.4 and 3.7.3 we prove that

Γ is an LHSCB for some useful special cases.

We now define four barrier oracles that Hypatia’s PDIPM uses; for ideal perfor-

mance, these oracle implementations should be efficient and numerically stable. For

an interior point 𝑢̃ ∈ int(𝒦) and a direction 𝑝 ∈ 𝑉 , the gradient 𝑔, the Hessian prod-

uct 𝐻, the inverse Hessian product 𝐻̄, and the third order directional derivative 𝑇
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are:

𝑔 := ∇Γ(𝑢̃), (3.38a)

𝐻 := ∇2Γ(𝑢̃)[𝑝], (3.38b)

𝐻̄ := (∇2Γ(𝑢̃))−1[𝑝], (3.38c)

𝑇 := ∇3Γ(𝑢̃)[𝑝, 𝑝]. (3.38d)

Note 𝑔,𝐻, 𝐻̄, 𝑇 ∈ 𝑉 , and compare 𝑇 here with T from (2.2). In later sections, we use

subscripts to refer to subcomponents of these oracles, for example the 𝑤 component of

the gradient oracle is 𝑔𝑤 := ∇𝑤Γ(𝑢̃) ∈ 𝑉 . Ideally, 𝐻 applies the positive definite linear

operator ∇2Γ(𝑢̃) : 𝑉 → 𝑉 without constructing an explicit Hessian, and similarly, 𝐻̄

applies the (unique) inverse operator (∇2Γ(𝑢̃))−1 : 𝑉 → 𝑉 without constructing or

factorizing an explicit Hessian.

We note that for the standard LHSCB Ψ for a cone of squares, efficient and

numerically stable procedures for these four oracles are well-known. The same cannot

be said for the LHB Γ currently. In Section 3.5, we derive these oracles for 𝒦𝑝 (noting

that they can be adapted easily for 𝒦ℎ).

3.5 Barrier oracles for epigraph-perspective cones

We consider the epigraph-perspective cone 𝒦𝑝 defined in (3.30). Recall that we let

𝑝 = (𝑝, 𝑞, 𝑟) ∈ R × R × 𝑉 and 𝑢̃ = (𝑢, 𝑣, 𝑤) ∈ int(𝒦𝑝), and we define 𝜁 and Γ :

int(𝒦𝑝)→ R from (3.37) as:

𝜁(𝑢̃) := 𝑢− 𝑣𝜙(𝑣−1𝑤), (3.39a)

Γ(𝑢̃) := − log(𝜁(𝑢̃))− log(𝑣)− logdet(𝑤). (3.39b)

In this section, we derive expressions and evaluation procedures for the 𝑔, 𝐻, 𝑇 , and

𝐻̄ oracles (defined in Section 3.4.4) corresponding to the LHB Γ for 𝒦𝑝. We note that

the oracles for 𝒦ℎ in (3.29) are simpler because no perspective operation is needed
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for a homogeneous 𝜙; they can be obtained by fixing 𝑣 = 1 and 𝑞 = 0 and ignoring

the 𝑣 components in the oracle expressions in this section.

Without assuming any particular form for 𝜙, we write 𝑔, 𝐻, and 𝑇 in Section 3.5.1

and 𝐻̄ in Section 3.5.2 in terms of the derivatives of 𝜙. If 𝜙 is a spectral function, these

derivatives can be computed using the expressions from Section 3.3. In the case that

𝜙 is a separable spectral function (see Section 3.3.2), we derive a more specialized

procedure for 𝐻̄ in Section 3.5.3, which is no more expensive than 𝐻. Finally, in

Section 3.5.4, we specialize the four oracles for the negative log-determinant function

(i.e. 𝜙(𝑤) = − logdet(𝑤); see Section 3.3.3) and we discuss implementations.

3.5.1 Derivatives

First, we express the derivatives of 𝜁 in terms of those of 𝜙. We define the function

𝜇 : R> × int(𝒬) → int(𝒬) and its first directional derivative 𝜉 ∈ 𝑉 in the direction

(𝑞, 𝑟) as:

𝜇(𝑣, 𝑤) := 𝑣−1𝑤, (3.40a)

𝜉 := ∇𝜇(𝑣, 𝑤)[(𝑞, 𝑟)] = ∇𝑣𝜇(𝑣, 𝑤)𝑞 +∇𝑤𝜇(𝑣, 𝑤)[𝑟] = 𝑣−1(𝑟 − 𝑞𝜇(𝑣, 𝑤)). (3.40b)

For convenience, we fix the constants 𝜇 := 𝜇(𝑣, 𝑤), 𝜙 := 𝜙(𝜇), and 𝜁 := 𝜁(𝑢̃). Let

∇𝜙, ∇2𝜙, and ∇3𝜙 be the derivatives of 𝜙 evaluated at 𝜇, and let ∇𝜁, ∇2𝜁, and ∇3𝜁

be the derivatives of 𝜁 evaluated at 𝑢̃. Using (3.40), the directional derivatives of 𝜁
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can be written compactly as:

∇𝑢𝜁 = 1, (3.41a)

∇𝑣𝜁 = −𝜙+∇𝜙[𝜇], (3.41b)

∇𝑤𝜁 = −∇𝜙, (3.41c)

∇𝜁[𝑝] = 𝑝− 𝑞𝜙− 𝑣∇𝜙[𝜉], (3.41d)

(∇2𝜁[𝑝])𝑣 = ∇2𝜙[𝜉, 𝜇], (3.41e)

(∇2𝜁[𝑝])𝑤 = −∇2𝜙[𝜉], (3.41f)

∇2𝜁[𝑝, 𝑝] = −𝑣∇2𝜙[𝜉, 𝜉], (3.41g)

(∇3𝜁[𝑝, 𝑝])𝑣 = ∇3𝜙[𝜉, 𝜉, 𝜇] +∇2𝜙[𝜉, 𝜉]− 2𝑣−1𝑞∇2𝜙[𝜉, 𝜇], (3.41h)

(∇3𝜁[𝑝, 𝑝])𝑤 = 2𝑣−1𝑞∇2𝜙[𝜉]−∇3𝜙[𝜉, 𝜉], (3.41i)

∇3𝜁[𝑝, 𝑝, 𝑝] = −𝑣∇3𝜙[𝜉, 𝜉, 𝜉] + 3𝑞∇2𝜙[𝜉, 𝜉]. (3.41j)

Using (3.41), we now derive the directional derivatives of Γ. For convenience, we

let ∇Γ, ∇2Γ, ∇3Γ be the derivatives of Γ evaluated at 𝑢̃. We define:

𝜎 := −∇𝑣𝜁 = 𝜙−∇𝜙[𝜇] ∈ R. (3.42)

The components of the gradient 𝑔 of Γ are:

𝑔𝑢 = −𝜁−1, (3.43a)

𝑔𝑣 = 𝜁−1𝜎 − 𝑣−1, (3.43b)

𝑔𝑤
3.26
= 𝜁−1∇𝜙− 𝑤−1. (3.43c)
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Differentiating (3.43), the Hessian components are:

∇2
𝑢,𝑢Γ = 𝜁−2 > 0, (3.44a)

∇2
𝑣,𝑢Γ = −𝜁−2𝜎 ∈ R, (3.44b)

∇2
𝑤,𝑢Γ = −𝜁−2∇𝜙 ∈ 𝑉, (3.44c)

∇2
𝑣,𝑣Γ = 𝑣−2 + 𝜁−2𝜎2 + 𝑣−1𝜁−1∇2𝜙[𝜇, 𝜇] > 0, (3.44d)

∇2
𝑤,𝑣Γ = 𝜁−2𝜎∇𝜙− 𝑣−1𝜁−1∇2𝜙[𝜇] ∈ 𝑉. (3.44e)

Differentiating (3.43c) in the direction 𝑟:

∇2
𝑤,𝑤Γ[𝑟]

3.24
= 𝜁−2∇𝜙[𝑟]∇𝜙+ 𝑣−1𝜁−1∇2𝜙[𝑟] + 𝑃 (𝑤−1)𝑟 ∈ 𝑉. (3.45)

Let:

𝜒 := 𝜁−1(𝑝− 𝑞𝜎 −∇𝜙[𝑟]) ∈ R. (3.46)

The components of the Hessian product 𝐻 are:

𝐻𝑢 = 𝜁−1𝜒, (3.47a)

𝐻𝑣 = −𝜁−1𝜎𝜒− 𝜁−1∇2𝜙[𝜉, 𝜇] + 𝑣−2𝑞, (3.47b)

𝐻𝑤 = −𝜁−1𝜒∇𝜙+ 𝜁−1∇2𝜙[𝜉] + 𝑃 (𝑤−1)𝑟. (3.47c)

Let:

𝜅 := 2𝜁−1(𝜒+ 𝑣−1𝑞)∇2𝜙[𝜉]− 𝜁−1∇3𝜙[𝜉, 𝜉] ∈ 𝑉. (3.48)

The components of the third order directional derivative 𝑇 are:

𝑇𝑢 = −2𝜁−1𝜒2 − 𝑣𝜁−2∇2𝜙[𝜉, 𝜉], (3.49a)

𝑇𝑣 = −𝑇𝑢𝜎 + ⟨𝜅, 𝜇⟩ − 𝜁−1∇2𝜙[𝜉, 𝜉]− 2𝑞2𝑣−3, (3.49b)

𝑇𝑤
3.25
= −𝑇𝑢∇𝜙− 𝜅− 2𝑃 (𝑤−1/2)(𝑃 (𝑤−1/2)𝑟)2. (3.49c)
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3.5.2 Inverse Hessian operator

The Hessian of Γ at any point 𝑢̃ ∈ int(𝒦𝑝) is a positive definite linear operator and

hence invertible. By treating the components of the Hessian in (3.44) and (3.45)

analogously to blocks of a positive definite matrix, we derive the inverse operator.

For convenience, we let:

𝑌𝑢 := (∇2
𝑤,𝑤Γ)

−1∇2
𝑤,𝑢Γ, (3.50a)

𝑌𝑣 := (∇2
𝑤,𝑤Γ)

−1∇2
𝑤,𝑣Γ, (3.50b)

𝑍𝑢,𝑢 := ∇2
𝑢,𝑢Γ− ⟨∇2

𝑤,𝑢Γ, 𝑌𝑢⟩, (3.50c)

𝑍𝑣,𝑢 := ∇2
𝑣,𝑢Γ− ⟨∇2

𝑤,𝑢Γ, 𝑌𝑣⟩, (3.50d)

𝑍𝑣,𝑣 := ∇2
𝑣,𝑣Γ− ⟨∇2

𝑤,𝑣Γ, 𝑌𝑣⟩. (3.50e)

Note 𝑌𝑢, 𝑌𝑣 ∈ 𝑉 . We let 𝑍 be:

𝑍 :=

⎡⎣𝑍𝑢,𝑢 𝑍𝑣,𝑢

𝑍𝑣,𝑢 𝑍𝑣,𝑣

⎤⎦ ∈ S2
≻, (3.51)

and its inverse is:

𝑍 := 𝑍−1 =
1

𝑍𝑢,𝑢𝑍𝑣,𝑣 − 𝑍2
𝑣,𝑢

⎡⎣ 𝑍𝑣,𝑣 −𝑍𝑣,𝑢

−𝑍𝑣,𝑢 𝑍𝑢,𝑢

⎤⎦ ∈ S2
≻. (3.52)

It can be verified (for example, by analogy to the block symmetric matrix inverse

formula) that the inverse Hessian product oracle 𝐻̄ in (3.38c) is:

𝐻̄𝑢 = 𝑍𝑢,𝑢(𝑝− ⟨𝑌𝑢, 𝑟⟩) + 𝑍𝑣,𝑢(𝑞 − ⟨𝑌𝑣, 𝑟⟩), (3.53a)

𝐻̄𝑣 = 𝑍𝑣,𝑢(𝑝− ⟨𝑌𝑢, 𝑟⟩) + 𝑍𝑣,𝑣(𝑞 − ⟨𝑌𝑣, 𝑟⟩), (3.53b)

𝐻̄𝑤 = −𝐻̄𝑢𝑌𝑢 − 𝐻̄𝑣𝑌𝑣 + (∇2
𝑤,𝑤Γ)

−1𝑟. (3.53c)

Hence computing 𝐻̄ is essentially only as difficult as applying the positive definite lin-

ear operator (∇2
𝑤,𝑤Γ)

−1. We are not aware of a simple expression for (∇2
𝑤,𝑤Γ)

−1 in gen-
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eral, but we explore the special cases of separable spectral functions in Section 3.5.3,

the negative log-determinant function in Section 3.5.4, and the root-determinant func-

tion in Section 3.7.4.

3.5.3 Inverse Hessian operator for the separable spectral case

Suppose 𝑤 ≻ 0 has the spectral decomposition (3.5), i.e. 𝑤 has the eigenvalues

𝑤1, . . . , 𝑤𝑑 > 0 and the Jordan frame 𝑐1, . . . , 𝑐𝑑. As in Section 3.3.2, we assume

distinct eigenvalues for simplicity. In the special case where 𝜙 is a convex separable

spectral function, i.e. 𝜙(𝑤) =
∑︀

𝑖∈J𝑑K ℎ(𝑤𝑖) for some convex ℎ : R> → R, we show

how to compute 𝐻̄ as efficiently as Hessian product oracle 𝐻. For all 𝑖 ∈ J𝑑K, we let

ℎ𝑖, (∇ℎ)𝑖, (∇2ℎ)𝑖, and (∇3ℎ)𝑖 denote the value and derivatives of ℎ evaluated at 𝜇.

We define 𝑚𝑖,𝑗 ∈ R for 𝑖, 𝑗 ∈ J𝑑K as:

𝑚𝑖,𝑗 :=

⎧⎪⎨⎪⎩𝜁−1 (∇ℎ)𝑖−(∇ℎ)𝑗
𝑤𝑖−𝑤𝑗

+ 𝑤−1
𝑖 𝑤−1

𝑗 𝑖 ̸= 𝑗,

𝜁−1𝑣−1(∇2ℎ)𝑖 + 𝑤−2
𝑖 𝑖 = 𝑗.

(3.54)

Since ℎ is convex, 𝑚𝑖,𝑗 > 0,∀𝑖, 𝑗 ∈ J𝑑K. Let 𝑀 : 𝑉 → 𝑉 be the self-adjoint linear

operator:

𝑀 := 𝑣−1𝜁−1∇2𝜙+ 𝑃 (𝑤−1) =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝑚𝑖,𝑗𝐿(𝑐𝑖)𝐿(𝑐𝑗) +
∑︁
𝑖∈J𝑑K

𝑚𝑖,𝑖𝑃 (𝑐𝑖). (3.55)

Using (3.12), we have the self-adjoint inverse operator of 𝑀 :

𝑀−1 =
∑︁

𝑖,𝑗∈J𝑑K:𝑖<𝑗

4𝑚−1
𝑖,𝑗 𝐿(𝑐𝑖)𝐿(𝑐𝑗) +

∑︁
𝑖∈J𝑑K

𝑚−1
𝑖,𝑖 𝑃 (𝑐𝑖). (3.56)

Substituting (3.55) into (3.45), we have:

∇2
𝑤,𝑤Γ[𝑟] = 𝜁−2∇𝜙[𝑟]∇𝜙+𝑀𝑟. (3.57)
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Note that the first term in (3.57) is analogous to the application (to 𝑟) of a low-

rank update to 𝑀 , and that 𝑀−1 in (3.56) is easy to apply. By analogy to the

Sherman-Morrison-Woodbury formula [Deng, 2011, Theorem 1.1], we can derive a

simple expression for the inverse operator (∇2
𝑤,𝑤Γ)

−1𝑟.

We let:

𝛼 := 𝑀−1∇𝜙 =
∑︁
𝑖∈J𝑑K

𝑚−1
𝑖,𝑖 (∇ℎ)𝑖𝑐𝑖 ∈ 𝑉, (3.58a)

𝛾 := 𝑣−2𝜁−1𝑀−1∇2𝜙[𝑤] = 𝑣−2𝜁−1
∑︁
𝑖∈J𝑑K

𝑚−1
𝑖,𝑖 (∇2ℎ)𝑖𝑤𝑖𝑐𝑖 ≻ 0. (3.58b)

Noting that 𝛾, 𝑤−1 ≻ 0 implies ⟨𝛾, 𝑤−1⟩ > 0, we define the scalar constants:

𝑘1 := 𝜁2 + ⟨∇𝜙, 𝛼⟩ > 0, (3.59a)

𝑘2 := 𝜎 + ⟨∇𝜙, 𝛾⟩ = 𝜎 + 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝛼⟩, (3.59b)

𝑘3 := 𝑣−2 + 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝜇− 𝛾⟩ = 𝑣−2 + 𝑣−1⟨𝛾, 𝑤−1⟩ > 0. (3.59c)

Now using the Sherman-Morrison-Woodbury formula:

(∇2
𝑤,𝑤Γ)

−1𝑟 = 𝑀−1𝑟 − 𝜁−2⟨𝑀−1∇𝜙, 𝑟⟩
1 + 𝜁−2⟨𝑀−1∇𝜙,∇𝜙⟩

𝑀−1∇𝜙 (3.60a)

= 𝑀−1𝑟 − 𝑘−1
1 ⟨𝛼, 𝑟⟩𝛼. (3.60b)
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Substituting (3.44) and (3.60) into (3.50):

𝑌𝑢 = (∇2
𝑤,𝑤Γ)

−1(−𝜁−2∇𝜙) (3.61a)

= −𝜁−2𝛼 + 𝜁−2𝑘−1
1 ⟨𝛼,∇𝜙⟩𝛼 (3.61b)

= −𝑘−1
1 𝛼, (3.61c)

𝑌𝑣 = (∇2
𝑤,𝑤Γ)

−1(𝜁−2𝜎∇𝜙− 𝑣−1𝜁−1∇2𝜙[𝜇]) (3.61d)

= −𝜎𝑌𝑢 − 𝑣−2𝜁−1(∇2
𝑤,𝑤Γ)

−1∇2𝜙[𝑤] (3.61e)

= 𝜎𝑘−1
1 𝛼− 𝛾 + 𝑣−2𝜁−1𝑘−1

1 ⟨𝛼,∇2𝜙[𝑤]⟩𝛼 (3.61f)

= 𝑘−1
1 𝑘2𝛼− 𝛾, (3.61g)

𝑍𝑢,𝑢 = 𝜁−2 − ⟨∇2
𝑤,𝑢Γ, 𝑌𝑢⟩ (3.61h)

= 𝜁−2 − 𝜁−2𝑘−1
1 ⟨∇𝜙, 𝛼⟩ (3.61i)

= 𝑘−1
1 , (3.61j)

𝑍𝑣,𝑢 = −𝜁−2𝜎 − ⟨∇2
𝑤,𝑢Γ, 𝑌𝑣⟩ (3.61k)

= −𝜁−2(𝜎 − ⟨∇𝜙, 𝑘−1
1 𝑘2𝛼− 𝛾⟩) (3.61l)

= −𝜁−2(𝜎 − 𝑘−1
1 𝑘2(𝑘1 − 𝜁2) + 𝑘2 − 𝜎) (3.61m)

= −𝑘−1
1 𝑘2, (3.61n)

𝑍𝑣,𝑣 = ∇2
𝑣,𝑣Γ− ⟨∇2

𝑤,𝑣Γ, 𝑌𝑣⟩ (3.61o)

= ∇2
𝑣,𝑣Γ + 𝜎⟨∇2

𝑤,𝑢Γ, 𝑌𝑣⟩+ 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝑌𝑣⟩ (3.61p)
3.61𝑛
= ∇2

𝑣,𝑣Γ + 𝜎(𝑘−1
1 𝑘2 − 𝜁−2𝜎) + 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝑌𝑣⟩ (3.61q)

= 𝑣−2 + 𝑣−3𝜁−1∇2𝜙[𝑤,𝑤] + 𝜎𝑘−1
1 𝑘2 + 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝑌𝑣⟩ (3.61r)

= 𝑣−2 + 𝑣−3𝜁−1∇2𝜙[𝑤,𝑤] + 𝜎𝑘−1
1 𝑘2 + 𝑘−1

1 𝑘2(𝑘2 − 𝜎)− 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝛾⟩

(3.61s)

= 𝑣−2 + 𝑘−1
1 𝑘2

2 + 𝑣−2𝜁−1⟨∇2𝜙[𝑤], 𝜇− 𝛾⟩ (3.61t)

= 𝑘3 + 𝑘−1
1 𝑘2

2. (3.61u)
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For 𝑍 in (3.51), we have det(𝑍) = 𝑘−1
1 𝑘3, so its inverse 𝑍 in (3.52) is:

𝑍𝑢,𝑢 = 𝑘1(𝑘3 + 𝑘−1
1 𝑘2

2)𝑘
−1
3 = 𝑘1 + 𝑘2

2𝑘
−1
3 , (3.62a)

𝑍𝑢,𝑣 = 𝑘2𝑘
−1
3 , (3.62b)

𝑍𝑣,𝑣 = 𝑘−1
3 . (3.62c)

Finally, we substitute (3.61) and (3.62) into (3.53) to derive the inverse Hessian

product 𝐻̄. We let:

𝑐1 := 𝑝− ⟨𝑌𝑢, 𝑟⟩
3.61
= 𝑝+ 𝑘−1

1 ⟨𝛼, 𝑟⟩, (3.63a)

𝑐2 := 𝑞 − ⟨𝑌𝑣, 𝑟⟩
3.61
= 𝑞 − 𝑘−1

1 𝑘2⟨𝛼, 𝑟⟩+ ⟨𝛾, 𝑟⟩. (3.63b)

For convenience, we derive 𝐻̄𝑣 before 𝐻̄𝑢 and 𝐻̄𝑤:

𝐻̄𝑣 = 𝑍𝑢,𝑣𝑐1 + 𝑍𝑣,𝑣𝑐2 (3.64a)

= 𝑘−1
3 (𝑘2𝑐1 + 𝑐2) (3.64b)

= 𝑘−1
3 (𝑘2𝑝+ 𝑞 + ⟨𝛾, 𝑟⟩), (3.64c)

𝐻̄𝑢 = 𝑍𝑢,𝑢𝑐1 + 𝑍𝑢,𝑣𝑐2 (3.64d)
3.64𝑏
= (𝑍𝑢,𝑢 − 𝑍𝑢,𝑣𝑘2)𝑐1 + 𝑍𝑢,𝑣𝑘3𝐻̄𝑣 (3.64e)

= 𝑘1𝑝+ 𝑘2𝐻̄𝑣 + ⟨𝛼, 𝑟⟩, (3.64f)

𝐻̄𝑤 = −𝐻̄𝑢𝑌𝑢 − 𝐻̄𝑣𝑌𝑣 + (∇2
𝑤,𝑤)

−1𝑟 (3.64g)
3.60
= 𝐻̄𝑢𝑘

−1
1 𝛼− 𝐻̄𝑣(𝑘

−1
1 𝑘2𝛼− 𝛾) +𝑀−1𝑟 − 𝑘−1

1 ⟨𝛼, 𝑟⟩𝛼 (3.64h)

= 𝑝𝛼 + 𝐻̄𝑣𝛾 +𝑀−1𝑟. (3.64i)

In Section 3.8.5, we compare the efficiency and numerical performance of the

closed-form formula for 𝐻̄ in (3.64) against a naive approach to computing 𝐻̄ that

performs a Cholesky factorization of an explicit Hessian matrix and uses a direct

linear solve. The closed-form formula is faster and more scalable, more memory-

97



efficient, more reliable to compute (as the Cholesky decomposition can fail), and

more numerically accurate.

3.5.4 Oracles for the log-determinant case

We now specialize the oracles derived in Sections 3.5.1 and 3.5.3 for the separable

spectral function 𝜙(𝑤) = − logdet(𝑤) = −
∑︀

𝑖∈J𝑑K log(𝑤𝑖). In Section 3.6, we show

that Γ is an LHSCB in this case. We let:

𝜉 := 𝑃 (𝑤−1/2)𝜉 = 𝑣−1𝑃 (𝑤−1/2)(−𝑣−1𝑞𝑤 + 𝑟) = 𝑣−1(−𝑣−1𝑞𝑒+ 𝑟) ∈ 𝑉. (3.65)

We have:

∇𝜙 3.26
= −𝜇−1 = −𝑣𝑃 (𝑤−1/2)𝑒, (3.66a)

∇2𝜙[𝜉]
3.27𝑎
= 𝑣2𝑃 (𝑤−1)𝜉 = 𝑣2𝑃 (𝑤−1/2)𝜉, (3.66b)

∇3𝜙[𝜉, 𝜉]
3.27𝑏
= −2𝑣3𝑃 (𝑤−1/2)𝜉2. (3.66c)

The constants from Section 3.5.1 have the form:

𝜎
3.42
= 𝜙+ 𝑑, (3.67a)

𝜒
3.46
= 𝜁−1(𝑝− 𝑞𝜎 + 𝑣 tr(𝑟)), (3.67b)

From (3.43), the 𝑤 component of the gradient is:

𝑔𝑤 = −(1 + 𝑣𝜁−1)𝑤−1. (3.68a)

From (3.47), the 𝑣 and 𝑤 components of the Hessian product are:

𝐻𝑣 = −𝜁−1𝜎𝜒− 𝑣𝜁−1 tr(𝜉) + 𝑣−2𝑞, (3.69a)

𝐻𝑤 = 𝑃 (𝑤−1/2)(𝑣𝜁−1𝜒𝑒+ 𝑣2𝜁−1𝜉 + 𝑟). (3.69b)
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From (3.49), the third order directional derivative is:

𝑇𝑢 = −2𝜁−1𝜒2 − 𝑣3𝜁−2 tr(𝜉2), (3.70a)

𝑇𝑣 = −𝑇𝑢𝜎 + 𝑣𝜁−1(2(𝜒+ 𝑣−1𝑞) tr(𝜉) + 𝑣 tr(𝜉2))− 2𝑣−3𝑞2, (3.70b)

𝑇𝑤 = 𝑃 (𝑤−1/2)(𝑇𝑢𝑣𝑒− 2𝜁−1𝑣2((𝜒+ 𝑣−1𝑞)𝜉 + 𝑣𝜉2)− 2𝑟2). (3.70c)

We derive the inverse Hessian product 𝐻̄ by specializing the separable case in

(3.64). We let:

𝑟 := 𝑃 (𝑤1/2)𝑟 ∈ 𝑉, (3.71a)

𝜃 := 𝑣2(𝜁 + (1 + 𝑑)𝑣)−1. (3.71b)

From (3.58) and (3.59), we have:

𝑀−1 = 𝜁(𝜁 + 𝑣)−1𝑃 (𝑤), (3.72a)

𝛼 = −𝑣𝜁(𝜁 + 𝑣)−1𝑤, (3.72b)

𝛾 = (𝜁 + 𝑣)−1𝑤, (3.72c)

𝑘1 = 𝜁2 + 𝑑𝑣2𝜁(𝜁 + 𝑣)−1, (3.72d)

𝑘2 = 𝜙+ 𝑑𝜁(𝜁 + 𝑣)−1, (3.72e)

𝑘−1
3 = (𝜁 + 𝑣)𝜃. (3.72f)
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For convenience, we derive 𝐻̄𝑣 before 𝐻̄𝑢 and 𝐻̄𝑤 as in (3.64):

𝐻̄𝑣 = 𝑘−1
3 (𝑘2𝑝+ 𝑞 + ⟨𝛾, 𝑟⟩) (3.73a)

= (𝜁 + 𝑣)𝜃((𝜙+ 𝑑𝜁(𝜁 + 𝑣)−1)𝑝+ 𝑞 + ⟨𝑟, 𝑤⟩(𝜁 + 𝑣)−1) (3.73b)

= 𝜃((𝜁 + 𝑣)(𝜙𝑝+ 𝑞) + 𝑑𝜁𝑝+ tr(𝑟)), (3.73c)

𝐻̄𝑢 = 𝑘1𝑝+ (𝜙+ 𝑑𝜁(𝜁 + 𝑣)−1)𝐻̄𝑣 + ⟨𝛼, 𝑟⟩ (3.73d)

= (𝜁2 + 𝑑𝑣2𝜁(𝜁 + 𝑣)−1)𝑝+ (𝜙+ 𝑑𝜁(𝜁 + 𝑣)−1)𝐻̄𝑣 + ⟨−𝑣𝜁(𝜁 + 𝑣)−1𝑤, 𝑟⟩ (3.73e)

= 𝜁(𝜁 + 𝑣)−1(𝑑𝑣2𝑝+ 𝑑𝐻̄𝑣 − 𝑣⟨𝑤, 𝑟⟩) + 𝜁2𝑝+ 𝜙𝐻̄𝑣, (3.73f)

𝐻̄𝑤 = 𝑝𝛼 + 𝐻̄𝑣𝛾 +𝑀−1𝑟 (3.73g)

= −𝑝𝑣𝜁(𝜁 + 𝑣)−1𝑤 + 𝐻̄𝑣(𝜁 + 𝑣)−1𝑤 + 𝜁(𝜁 + 𝑣)−1𝑃 (𝑤)𝑟 (3.73h)

= (𝜁 + 𝑣)−1𝑃 (𝑤1/2)((−𝜁𝑝𝑣 + 𝐻̄𝑣)𝑒+ 𝜁𝑟). (3.73i)

Recall that in Section 3.5.3, we used the simplifying assumption of distinct eigen-

values, but for the negative log-determinant case this is not necessary. Note that if

it is possible to apply 𝑃 (𝑤1/2) and 𝑃 (𝑤−1/2) without accessing the eigenvalues of 𝑤,

then all four oracles can be computed without an explicit eigendecomposition. For

example, in our implementation for 𝑉 = S𝑑 and 𝑉 = H𝑑, only a Cholesky factoriza-

tion of 𝑤 is needed. This is unlike the more general separable spectral function case,

where the explicit eigenvalues of 𝑤 are needed.

3.6 Matrix monotone derivative cones

After defining the matrix monotone property of a function in Section 3.6.1, we intro-

duce the matrix monotone derivative cone 𝒦MMD in Section 3.6.2. 𝒦MMD is a special

case of the epigraph-perspective cone 𝒦𝑝 with a separable spectral function 𝜙. In

Section 3.6.4, we prove that our barrier function Γ for 𝒦MMD is an LHSCB.
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3.6.1 Matrix monotonicity

A function 𝑓 is matrix monotone (or operator monotone) if 𝑤𝑎 ⪰ 𝑤𝑏 ⪰ 0 implies

𝑓(𝑤𝑎) ⪰ 𝑓(𝑤𝑏) for all 𝑤𝑎, 𝑤𝑏 ∈ S𝑑 for all integers 𝑑. The following integral represen-

tation result is attributed to Löwner [1934] (see e.g. Kwong [1989, Theorem 1] and

Furuta [2008, Theorem L]). A function 𝑓 : R> → R is matrix monotone in R> if and

only if it has the representation:

𝑓(𝑥) = 𝛼 + 𝛽𝑥+

∫︁ ∞

0

𝑥

𝑥+ 𝑡
d 𝜌(𝑡) = 𝛼 + 𝛽𝑥+

∫︁ ∞

0

(︂
1− 𝑡

𝑥+ 𝑡

)︂
d 𝜌(𝑡), (3.74)

where 𝛼 ∈ R, 𝛽 ∈ R≥ and 𝜌 is a positive measure on R> such that
∫︀∞
0
(1+𝑡)−1 d 𝜌(𝑡) <

∞.

This result implies that, for a cone of squares 𝒬 of a Jordan algebra, and for

𝑤 ∈ int(𝒬) with the spectral decomposition 𝑤 =
∑︀

𝑖∈J𝑑K 𝑤𝑖𝑐𝑖, we have:

𝑓(𝑤) =
∑︁
𝑖∈J𝑑K

𝑓(𝑤𝑖)𝑐𝑖 (3.75a)

= 𝛼𝑒+ 𝛽𝑤 +

∫︁ ∞

0

∑︁
𝑖∈J𝑑K

(︂
1− 𝑡

𝑤𝑖 + 𝑡

)︂
𝑐𝑖 d 𝜌(𝑡) (3.75b)

= 𝛼𝑒+ 𝛽𝑤 +

∫︁ ∞

0

(𝑒− 𝑡(𝑤 + 𝑡𝑒)−1) d 𝜌(𝑡). (3.75c)

This is similar to the representation in Faybusovich and Tsuchiya [2017, page 1520].

3.6.2 Cone definition

Let ℎ : R> → R be a convex 𝐶3-smooth function. We assume that that the first

derivative of ℎ, ∇ℎ, is a matrix monotone function. This also implies that ℎ is

convex. We call such functions matrix monotone derivative (MMD) functions.

In Table 3.1, we give some common examples of MMD functions, with abbreviated

names in the first column. We also give ∇ℎ, the domain of the convex conjugate ℎ*

(defined in (1.4)), and a closed-form formula for ℎ*. Due to Carlen [2010, Theorem

2.6 (Löwner-Heinz Theorem)], the functions 𝑥 → log(𝑥), 𝑥 → −𝑥𝑝 for 𝑝 ∈ [−1, 0],
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and 𝑥 → 𝑥𝑝 for 𝑝 ∈ [0, 1] are matrix monotone. This implies that in Table 3.1, each

function in the ∇ℎ column is matrix monotone. Note that NegSqrt is equivalent to

NegPower for 𝑝 = 1/2; we highlight NegSqrt as an interesting case, for which the

conjugate ℎ* is a positive rescaling of the inverse function. Note we exclude the case

𝑝 = 1 in NegPower and Power because it is homogeneous (ℎ is linear). More examples

of matrix monotone functions can be found in Kwong [1989], Furuta [2008].

MMD function ℎ ∇ℎ dom(ℎ*) ℎ*

NegLog − log(𝑥) −𝑥−1 R> −1− log(𝑥)
NegEntropy 𝑥 log(𝑥) 1 + log(𝑥) R exp(−1− 𝑥)

NegSqrt −
√
𝑥 −1

2
𝑥−1/2 R>

1
4
𝑥−1

NegPower, 𝑝 ∈ (0, 1) −𝑥𝑝 −𝑝𝑥𝑝−1 R≥ −(𝑝− 1)(𝑥/𝑝)𝑞

Power, 𝑝 ∈ (1, 2] 𝑥𝑝 𝑝𝑥𝑝−1 R (𝑝− 1)(𝑥−/𝑝)
𝑞

Table 3.1: Examples of MMD functions. We let 𝑞 := 𝑝/(𝑝 − 1), which gives 𝑞 ∈
(−∞, 0) for 𝑝 ∈ (0, 1) in the NegPower case, or 𝑞 ∈ [2,∞) for 𝑝 ∈ (1, 2] in the Power
case. We also let 𝑥− := max(−𝑥, 0) in the Power case.

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4
− log(𝑥)
𝑥 log(𝑥)

−
√
𝑥

𝑥3/2

Figure 3-1: Plots of example MMD functions.

Suppose 𝒬 is the cone of squares of a Jordan algebra 𝑉 with rank 𝑑. Let 𝜙 :

int(𝒬) → R be the 𝐶3-smooth function 𝜙(𝑤) = tr(ℎ(𝑤)) =
∑︀

𝑖∈J𝑑K ℎ(𝑤𝑖), which is

a convex separable spectral function (see Section 3.3.2). As in Section 3.4.2, we let

𝑢̃ = (𝑢, 𝑣, 𝑤) ∈ ℰ = R× R> × int(𝒬). The function 𝜁 : ℰ → R has the form:

𝜁(𝑢̃) := 𝑢− 𝑣 tr(ℎ(𝑣−1𝑤)). (3.76)
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We define the matrix monotone derivative cone 𝒦MMD, a special case of the

epigraph-perspective cone 𝒦𝑝 in (3.30), as:

𝒦MMD := cl{𝑢̃ ∈ ℰ : 𝑢 ≥ 𝑣 tr(ℎ(𝑣−1𝑤))}, (3.77)

which is a proper cone. Note that the negative log-determinant cone, whose barrier

function we examined in Section 3.5.4, is a special case of 𝒦MMD where ℎ is the NegLog

function from Table 3.1. For the separable case, the convex conjugate 𝜙* : 𝑉 → R∪∞

(see (1.4)) of 𝜙 is 𝜙*(𝑟) = tr(ℎ*(𝑟)). So from (3.31), the dual cone is:

𝒦*
MMD := cl{𝑢̃ ∈ R> × R× 𝑉 : 𝑣 ≥ 𝑢 tr(ℎ*(𝑢−1𝑤))}. (3.78)

3.6.3 Derivatives of the MMD trace

Suppose 𝑤 ≻ 0. Since 𝜙(𝑤) = tr(ℎ(𝑤)) and ∇ℎ is matrix monotone, from (3.75) we

can write the gradient:

∇𝜙(𝑤) = ∇ℎ(𝑤) = 𝛼𝑒+ 𝛽𝑤 +

∫︁ ∞

0

(𝑒− 𝑡(𝑤 + 𝑡𝑒)−1) d 𝜌(𝑡). (3.79)

Note that 𝑤+ 𝑡𝑒 ≻ 0 for 𝑡 ≥ 0, so (𝑤+ 𝑡𝑒)−1 is well-defined. Differentiating (3.79) in

the direction 𝑟 ∈ 𝑉 , we have the second order directional derivative:

∇2𝜙(𝑤)[𝑟]
3.24
= 𝛽𝑟 +

∫︁ ∞

0

𝑡𝑃 ((𝑤 + 𝑡𝑒)−1)𝑟 d 𝜌(𝑡), (3.80)

and the third order directional derivative:

∇3𝜙(𝑤)[𝑟, 𝑟]
3.25
= −2

∫︁ ∞

0

𝑡𝑃 ((𝑤 + 𝑡𝑒)−1/2)(𝑃 ((𝑤 + 𝑡𝑒)−1/2)𝑟)2 d 𝜌(𝑡). (3.81)

3.6.4 Self-concordant barrier

For 𝒦MMD, the LHB Γ : int(𝒦MMD)→ R from (3.37) has the form:

Γ(𝑢̃) := − log(𝜁(𝑢̃))− log(𝑣)− logdet(𝑤). (3.82)

103



We describe easily-computable oracles for this Γ in Section 3.5, including an inverse

Hessian product 𝐻̄ in Section 3.5.3 that is as easy to compute as the Hessian product

𝐻 (since 𝜙 is a separable spectral function).

We note that Faybusovich and Tsuchiya [2017] derive a (1 + 𝑑)-self-concordant

barrier for the related convex (but not conic) set 𝒮:

𝒮 := cl{(𝑢,𝑤) ∈ R× int(𝒬) : 𝑢− 𝜙(𝑤) ≥ 0}. (3.83)

𝒦MMD is the conic hull of 𝒮. In Theorem 3.6.1, we prove that our barrier Γ in (3.82)

is self-concordant, hence it is an LHSCB for 𝒦MMD with parameter 2+ 𝑑. This small

additive increment of one in the barrier parameter is in sharp contrast to generic conic

hull results, which give barriers with a large multiplicative factor in the parameter

(for example, Nesterov and Nemirovskii [1994, Proposition 5.1.4] yields the parameter

800(1 + 𝑑)). Since the optimal barrier parameter for cl(ℰ) is 1 + 𝑑, our parameter

cannot be reduced by more than one.

Theorem 3.6.1. Γ in (3.82) is a (2 + 𝑑)-LHSCB for 𝒦MMD in (3.77).

Proof. We show that 𝜁 in (3.76) is (R≥, 1)-compatible with the domain ℰ , in the

sense of Nesterov and Nemirovskii [1994, Definition 5.1.1]. This follows if (i) 𝜁 is 𝐶3-

smooth on ℰ , (ii) 𝜁 is concave with respect to R≥, (iii) for any point 𝑢̃ ∈ int(𝒦MMD)

and direction 𝑝 = (𝑝, 𝑞, 𝑟) ∈ R × R × 𝑉 satisfying 𝑣 ± 𝑞 ≥ 0 and 𝑤 ± 𝑟 ⪰ 0 it holds

that:

∇3𝜁(𝑢̃)[𝑝, 𝑝, 𝑝] ≤ −3∇2𝜁(𝑢̃)[𝑝, 𝑝]. (3.84)

Suppose 𝑣 ± 𝑞 ≥ 0 and 𝑤 ± 𝑟 ⪰ 0. As in (3.40), we let 𝜇 := 𝜇(𝑣, 𝑤) = 𝑣−1𝑤 ≻ 0

and 𝜉 := 𝑣−1(𝑟− 𝑞𝜇). From (3.41), the second and third order directional derivatives

of 𝜁 at 𝑢̃ in direction 𝑝 are:

∇2𝜁(𝑢̃)[𝑝, 𝑝] = −𝑣∇2𝜙(𝜇)[𝜉, 𝜉], (3.85a)

∇3𝜁(𝑢̃)[𝑝, 𝑝, 𝑝] = −𝑣∇3𝜙(𝜇)[𝜉, 𝜉, 𝜉] + 3𝑞∇2𝜙(𝜇)[𝜉, 𝜉]. (3.85b)

Since 𝜙 is convex and 𝐶3-smooth on int(𝒬) by assumption, (3.76) and (3.85) imply
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that 𝜁 is concave and 𝐶3-smooth on ℰ . It remains to show that (3.84) holds.

For 𝑡 ≥ 0, let:

𝑎(𝑡) := 𝜇+ 𝑡𝑒 ≻ 0, (3.86a)

𝑎̄(𝑡) := 𝑎(𝑡)−1/2 ≻ 0, (3.86b)

𝜉(𝑡) := 𝑃 (𝑎̄(𝑡))𝜉. (3.86c)

By the integral representation result from Section 3.6.1 [Löwner, 1934], there exists

a positive measure 𝜌 and 𝛽 ≥ 0 such that the directional derivatives of 𝜙 are:

∇2𝜙(𝜇)[𝜉, 𝜉]
3.80
= 𝛽 tr(𝜉2) +

∫︁ ∞

0

𝑡 tr(𝜉(𝑡)2) d 𝜌(𝑡), (3.87a)

∇3𝜙(𝜇)[𝜉, 𝜉, 𝜉]
3.81
= −2

∫︁ ∞

0

𝑡 tr(𝜉(𝑡)3) d 𝜌(𝑡). (3.87b)

From (3.85) and (3.87), the compatibility condition (3.84) is equivalent to nonnega-

tivity of:

− 3∇2𝜁(𝑢̃)[𝑝, 𝑝]−∇3𝜁(𝑢̃)[𝑝, 𝑝, 𝑝] (3.88a)

= 3(𝑣 − 𝑞)𝛽 tr(𝜉2) +

∫︁ ∞

0

𝑡(3(𝑣 − 𝑞) tr(𝜉(𝑡)2)− 2𝑣 tr(𝜉(𝑡)3)) d 𝜌(𝑡). (3.88b)

Since 𝑣 ≥ 𝑞, the first term in (3.88b) is nonnegative. The second term (the

integral) is nonnegative if for all 𝑡 ≥ 0, the following inner term is nonnegative:

3(𝑣 − 𝑞) tr(𝜉(𝑡)2)− 2𝑣 tr(𝜉(𝑡)3) = ⟨𝜉(𝑡)2, 3(𝑣 − 𝑞)𝑒− 2𝑣𝜉(𝑡)⟩. (3.89)

By self-duality of 𝒬, (3.89) is nonnegative if 3(𝑣 − 𝑞)𝑒 − 2𝑣𝜉(𝑡) ⪰ 0, which we now

prove. For 𝑡 ≥ 0, let:

𝑏(𝑡) := (1− 𝑣−1𝑞)𝑎(𝑡)− 𝜉 = 𝑣−1(𝑤 − 𝑟) + 𝑡(1− 𝑣−1𝑞)𝑒. (3.90)
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Since 𝑤 ⪰ 𝑟 and 1− 𝑣−1𝑞 ≥ 0, we have 𝑏(𝑡) ⪰ 0. Hence we have:

(1− 𝑣−1𝑞)𝑒− 𝜉(𝑡)
3.90
= 𝑃 (𝑎̄(𝑡))𝑏(𝑡) ⪰ 0, (3.91)

since 𝑎̄(𝑡) ≻ 0 implies 𝑃 (𝑎̄(𝑡)) is an automorphism on 𝒬 (see Faraut and Koranyi

[1998, Page 48]). Therefore:

3(𝑣 − 𝑞)𝑒− 2𝑣𝜉(𝑡)
3.91

⪰ 3(𝑣 − 𝑞)𝑒− 2𝑣(1− 𝑣−1𝑞)𝑒 = (𝑣 − 𝑞)𝑒 ⪰ 0. (3.92)

So (3.89) is nonnegative, which implies the integral term in (3.88b) is nonnegative.

Thus (3.88b) is nonnegative, so (3.84) holds and compatibility is proved. Now by

Nesterov and Nemirovskii [1994, Proposition 5.1.7], Γ is an LHSCB for 𝒦MMD with

parameter 2 + 𝑑.

3.7 Root-determinant cones

In Section 3.7.1, we define the root-determinant cone 𝒦rtdet, which is the hypograph of

the homogeneous nonseparable spectral root-determinant function. After expressing

the derivatives of this function in Section 3.7.2, we prove that our barrier function

Γ for 𝒦rtdet is an LHSCB in Section 3.7.3, and we derive easily-computable barrier

oracles in Section 3.7.4.

3.7.1 Cone definition

Suppose 𝒬 is a cone of squares of a Jordan algebra 𝑉 with rank 𝑑. Let 𝜙 : 𝒬 → R≥

denote the root-determinant function (or the geometric mean of the eigenvalues):

𝜙(𝑤) := det(𝑤)1/𝑑 =
∏︁
𝑖∈J𝑑K

𝑤
1/𝑑
𝑖 , (3.93)
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which is a concave, homogeneous nonseparable spectral function (see Section 3.3.1).

We let 𝑢̃ := (𝑢,𝑤) ∈ ℰ = R×𝒬. The function 𝜁 : ℰ → R has the form:

𝜁(𝑢̃) := 𝜙(𝑤)− 𝑢. (3.94)

We define the root-determinant cone 𝒦rtdet and its dual cone as:

𝒦rtdet := {(𝑢,𝑤) ∈ R×𝒬 : 𝑢 ≤ det(𝑤)1/𝑑}, (3.95a)

𝒦*
rtdet := {(𝑢,𝑤) ∈ R≤ ×𝒬 : −𝑑−1𝑢 ≤ det(𝑤)1/𝑑}. (3.95b)

We note that 𝒦rtdet is a hypograph modification of the epigraph cone 𝒦ℎ in (3.29), and

it is a primitive proper cone. 𝒦*
rtdet can be derived by modifying the steps we use to

derive 𝒦*
ℎ in (3.35) and using the convex conjugate of the negative root-determinant

function.

3.7.2 Derivatives of root-determinant

Suppose 𝑤 ≻ 0. Since 𝜙(𝑤) = exp(𝑑−1 logdet(𝑤)), applying the chain rule and using

(3.26) gives us the gradient:

∇𝜙(𝑤) = 𝑑−1𝜙(𝑤)𝑤−1. (3.96)

Let 𝑟 ∈ 𝑉 and 𝑟 := 𝑃 (𝑤−1/2)𝑟 ∈ 𝑉 . Using the product rule on (3.96), we have the

second order directional derivative:

∇2𝜙(𝑤)[𝑟] = 𝑑−2⟨𝑤−1, 𝑟⟩∇𝜙(𝑤) + 𝑑−1𝜙(𝑤)∇𝑤(𝑤
−1)[𝑟] (3.97a)

3.24
= 𝑑−1𝜙(𝑤) tr(𝑟)𝑤−1 − 𝑑−1𝜙(𝑤)𝑃 (𝑤−1)𝑟 (3.97b)

= 𝑑−1𝜙(𝑤)(𝑑−1 tr(𝑟)𝑤−1 − 𝑃 (𝑤−1)𝑟) (3.97c)

= 𝑑−1𝜙(𝑤)𝑃 (𝑤−1/2)(𝑑−1 tr(𝑟)𝑒− 𝑟). (3.97d)
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Finally, using the product rule on (3.97c), we have the third order directional deriva-

tive:

∇3𝜙(𝑤)[𝑟, 𝑟] = 𝑑−1⟨𝑑−1 tr(𝑟)𝑤−1 − 𝑃 (𝑤−1)𝑟, 𝑟⟩∇𝜙(𝑤) + 𝑑−1𝜙(𝑤)(

𝑑−1(⟨𝑤−1, 𝑟⟩∇𝑤(⟨𝑤−1, 𝑟⟩) + tr(𝑟)∇𝑤(𝑤
−1)[𝑟])−∇𝑤(𝑃 (𝑤−1)𝑟)[𝑟])

(3.98a)

3.25
= 𝑑−2𝜙(𝑤)(𝑑−1 tr(𝑟)2 − tr(𝑟2))𝑤−1 + 𝑑−1𝜙(𝑤)(

− 2𝑑−1 tr(𝑟)𝑃 (𝑤−1)𝑟 + 2𝑃 (𝑤−1/2)(𝑃 (𝑤−1/2)𝑟)2)
(3.98b)

= 𝑑−1𝜙(𝑤)𝑃 (𝑤−1/2)(𝑑−1(𝑑−1 tr(𝑟)2 − tr(𝑟2))𝑒− 2𝑑−1 tr(𝑟)𝑟 + 2𝑟2). (3.98c)

3.7.3 Self-concordant barrier

For 𝒦rtdet, the LHB Γ : int(𝒦rtdet)→ R from (3.37) has the form:

Γ(𝑢̃) := − log(𝜁(𝑢̃))− logdet(𝑤). (3.99)

In Theorem 3.7.1 we show that Γ is self-concordant with parameter 1 + 𝑑. Since the

optimal barrier parameter for ℰ is 𝑑, our parameter cannot be reduced by more than

one.

Theorem 3.7.1. Γ in (3.99) is a (1 + 𝑑)-LHSCB for 𝒦rtdet in (3.95a).

Proof. Note Ψ(𝑢̃) := − logdet(𝑤) is a 𝑑-LHSCB for ℰ . We show that 𝜁 in (3.94) is

(R≥, 1)-compatible with the barrier Ψ in the sense of Nesterov and Nemirovskii [1994,

Definition 5.1.2]. Compatibility follows if (i) 𝜁 is 𝐶3-smooth on int(ℰ), (ii) concave

with respect to R≥, (iii) for any point 𝑢̃ ∈ int(𝒦rtdet) and direction 𝑝 = (𝑝, 𝑟) ∈ R×𝑉

it holds that:

∇3𝜁(𝑢̃)[𝑝, 𝑝, 𝑝] ≤ −3(∇2Ψ(𝑢̃)[𝑝, 𝑝])1/2∇2𝜁(𝑢̃)[𝑝, 𝑝]. (3.100)
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Suppose 𝑢̃ ∈ int(𝒦rtdet). From (3.94), we have:

∇2𝜁(𝑢̃)[𝑝, 𝑝] = ∇2𝜙(𝑤)[𝑟, 𝑟], (3.101a)

∇3𝜁(𝑢̃)[𝑝, 𝑝, 𝑝] = ∇3𝜙(𝑤)[𝑟, 𝑟, 𝑟]. (3.101b)

Since 𝜙 is concave and 𝐶3-smooth on int(𝒬), (3.101) implies 𝜁 is concave and 𝐶3-

smooth on int(ℰ). It remains to show that (3.100) holds.

Let 𝜎 ∈ R𝑑 be the eigenvalues of 𝑟 := 𝑃 (𝑤−1/2)𝑟. Then:

(∇2Ψ(𝑢̃)[𝑝, 𝑝])1/2
3.27𝑎
= tr(𝑟2)1/2 = ‖𝜎‖. (3.102)

Let 𝑚𝑘 := 𝑑−1 tr(𝑟𝑘),∀𝑘 ∈ J3K, and let 𝛿𝑖 := 𝜎𝑖 −𝑚1,∀𝑖 ∈ J𝑑K. By the formulae for

variance and skewness, we have:

𝑚2 −𝑚2
1 = 𝑑−1

∑︁
𝑖∈J𝑑K

𝛿2𝑖 , (3.103a)

𝑚3 − 3𝑚1𝑚2 + 2𝑚3
1 = 𝑑−1

∑︁
𝑖∈J𝑑K

𝛿3𝑖 . (3.103b)

For convenience, let 𝜙 := 𝜙(𝑤) > 0 be a constant. We have:

∇2𝜙(𝑤)[𝑟, 𝑟]
3.97
= 𝑑−1𝜙⟨𝑃 (𝑤−1/2)(𝑑−1 tr(𝑟)𝑒− 𝑟), 𝑟⟩ (3.104a)

= −𝜙(𝑑−1 tr(𝑟2)− 𝑑−2 tr(𝑟)2) (3.104b)

= −𝜙(𝑚2 −𝑚2
1) (3.104c)

3.103𝑎
= −𝑑−1𝜙

∑︁
𝑖∈J𝑑K

𝛿2𝑖 ≤ 0. (3.104d)
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Similarly:

∇3𝜙(𝑤)[𝑟, 𝑟, 𝑟]
3.98
= 𝑑−1𝜙⟨𝑑−1(𝑑−1 tr(𝑟)2 − tr(𝑟2))𝑒− 2𝑑−1 tr(𝑟)𝑟 + 2𝑟2, 𝑟⟩ (3.105a)

= 𝑑−1𝜙(𝑑−1(𝑑−1 tr(𝑟)2 − tr(𝑟2)) tr(𝑟)− 2𝑑−1 tr(𝑟) tr(𝑟2) + 2 tr(𝑟3))

(3.105b)

= 𝜙(𝑚3
1 − 3𝑚1𝑚2 + 2𝑚3) (3.105c)

= 𝜙(3𝑚1(𝑚2 −𝑚2
1) + 2(𝑚3 − 3𝑚1𝑚2 + 2𝑚3

1)) (3.105d)
3.103
= 𝑑−1𝜙

∑︁
𝑖∈J𝑑K

(3𝑚1𝛿
2
𝑖 + 2𝛿3𝑖 ) (3.105e)

= 𝑑−1𝜙
∑︁
𝑖∈J𝑑K

𝛿2𝑖 (𝑚1 + 2𝜎𝑖). (3.105f)

Finally, using (3.102), (3.104) and (3.105) the compatibility condition (3.100) is

equivalent to nonnegativity of:

−∇3𝜁(𝑢̃)[𝑝, 𝑝, 𝑝]− 3(∇2Ψ(𝑢̃)[𝑝, 𝑝])1/2∇2𝜁(𝑢̃)[𝑝, 𝑝] (3.106a)

= −𝑑−1𝜙
∑︁
𝑖∈J𝑑K

𝛿2𝑖 (𝑚1 + 2𝜎𝑖) + 3‖𝜎‖𝑑−1𝜙
∑︁
𝑖∈J𝑑K

𝛿2𝑖 (3.106b)

= 𝑑−1𝜙
∑︁
𝑖∈J𝑑K

𝛿2𝑖 (‖𝜎‖ −𝑚1 + 2(‖𝜎‖ − 𝜎𝑖)). (3.106c)

Clearly, 𝑑−1𝜙𝛿2𝑖 ≥ 0 and 𝜎𝑖 ≤ ‖𝜎‖ for all 𝑖 ∈ J𝑑K. We have 𝑚1 ≤ 𝑑−1‖𝜎‖1 ≤

𝑑−1/2‖𝜎‖ ≤ ‖𝜎‖. Hence (3.106c) is nonnegative.

Thus (3.100) holds and compatibility is proved. Now by Nesterov and Nemirovskii

[1994, Proposition 5.1.7], Γ is a (1 + 𝑑)-LHSCB for 𝒦rtdet.

3.7.4 Evaluating barrier oracles

Using the derivatives of 𝜙 from Section 3.7.2, we derive easily-computable oracles for

the LHSCB (3.99). Let 𝑢̃ ∈ int(𝒦rtdet) and 𝑝 = (𝑝, 𝑟) ∈ R × 𝑉 . For convenience, let
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𝜙 := 𝜙(𝑤) > 0 be a constant. We define the scalar constants:

𝜂 := 𝑑−1𝜙𝜁−1, (3.107a)

𝜃 := 1 + 𝜂, (3.107b)

𝜒 := −𝜁−1𝑝+ 𝜂 tr(𝑟), (3.107c)

𝜏 := 𝜒− 𝑑−1 tr(𝑟), (3.107d)

𝜐 := tr(𝑟2)− 𝑑−1 tr(𝑟)2. (3.107e)

Note that:

∇𝑢(𝜁
−1) = 𝜁−2, (3.108a)

∇𝑢𝜂 = 𝜁−1𝜂, (3.108b)

∇𝑢𝜒 = 𝜁−1𝜒, (3.108c)

∇𝑤(𝜁
−1) = −𝜁−2∇𝜙(𝑤) 3.96

= −𝜁−1𝜂𝑤−1, (3.108d)

∇𝑤𝜂 = 𝜂(𝑑−1 − 𝜂)𝑤−1, (3.108e)

∇𝑤𝜒
3.24
= 𝜁−1𝜂𝑝𝑤−1 + 𝜂(𝑑−1 − 𝜂) tr(𝑟)𝑤−1 − 𝜂𝑃 (𝑤−1)𝑟 (3.108f)

= −𝜂(𝜏𝑤−1 + 𝑃 (𝑤−1)𝑟). (3.108g)

The gradient of Γ in (3.99) is:

𝑔𝑢 = 𝜁−1, (3.109a)

𝑔𝑤 = −𝜁−1∇𝜙(𝑤)− 𝑤−1 (3.109b)

= −𝜃𝑤−1. (3.109c)
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Differentiating (3.109), the Hessian product is:

𝐻𝑢 = ∇𝑢𝑔𝑢𝑝+∇𝑢𝑔𝑤[𝑟] (3.110a)

= 𝜁−2𝑝− 𝜁−1𝜂 tr(𝑟) (3.110b)

= −𝜁−1𝜒, (3.110c)

𝐻𝑤 = ∇𝑤𝑔𝑢𝑝+∇𝑤𝑔𝑤[𝑟] (3.110d)
3.24
= −𝜁−1𝜂𝑝𝑤−1 − tr(𝑟)𝜂(𝑑−1 − 𝜂)𝑤−1 + 𝜃𝑃 (𝑤−1)𝑟 (3.110e)

= 𝑃 (𝑤−1/2)(𝜂𝜏𝑒+ 𝜃𝑟). (3.110f)

Differentiating (3.110), the the third order directional derivative is:

𝑇𝑢 = ∇𝑢𝐻𝑢𝑝+∇𝑢𝐻𝑤[𝑟] (3.111a)

= −2𝜁−2𝑝𝜒+ 𝜁−1𝜂(𝜏 tr(𝑟) + tr(𝑟2)) + 𝜁−1𝜂 tr(𝑟)𝜒 (3.111b)

= 𝜁−1(2𝜒2 + 𝜂𝜐), (3.111c)

𝑇𝑤 = ∇𝑤𝐻𝑢𝑝+∇𝑤𝐻𝑤[𝑟] (3.111d)

3.25
= 𝜁−1𝜂𝑝𝜒𝑤−1 + 𝜁−1𝜂𝑝(𝜏𝑤−1 + 𝑃 (𝑤−1)𝑟)− 𝜂𝜏𝑃 (𝑤−1)𝑟 +

tr(𝑟)𝜏𝜂(𝑑−1 − 𝜂)𝑤−1 + 𝜂(−𝜂(𝜏 tr(𝑟) + tr(𝑟2)) + 𝑑−1 tr(𝑟2))𝑤−1 +

𝜂(𝑑−1 − 𝜂) tr(𝑟)𝑃 (𝑤−1)𝑟 − 2𝜃𝑃 (𝑤−1/2)𝑟2

(3.111e)

= 𝜂(−𝜒𝜏 + 𝜁−1𝑝𝜒+ (𝑑−1 − 𝜂)(tr(𝑟)𝜏 + tr(𝑟2)))𝑤−1 +

𝜂(−𝜏 + 𝜁−1𝑝+ (𝑑−1 − 𝜂) tr(𝑟))𝑃 (𝑤−1)𝑟 − 2𝜃𝑃 (𝑤−1/2)𝑟2
(3.111f)

= 𝑃 (𝑤−1/2)(𝜂(−2𝜒𝜏 + (𝑑−1 − 𝜂)𝜐)𝑒− 2𝜂𝜏𝑟 − 2𝜃𝑟2). (3.111g)

In Lemma 3.7.2 below, we give a closed-form inverse Hessian product operator.

This operator (3.112) a similar structure to the Hessian product operator (3.110),

except that it applies 𝑃 (𝑤1/2) instead of 𝑃 (𝑤−1/2).
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Lemma 3.7.2. Letting 𝑟 := 𝑃 (𝑤1/2)𝑟 ∈ 𝑉 , the inverse Hessian product is:

𝐻̄𝑢 = (𝜁2 + 𝑑−1𝜙2)𝑝+ 𝑑−1𝜙 tr(𝑟), (3.112a)

𝐻̄𝑤 = 𝑃 (𝑤1/2)(𝑑−1(𝜙𝑝+ 𝜂𝜃−1 tr(𝑟))𝑒+ 𝜃−1𝑟). (3.112b)

Proof. Note that the Hessian operator (3.110) is a positive definite linear operator,

so it has a unique inverse linear operator. We show that (∇2Γ)−1(∇2Γ[𝑝]) = 𝑝. Into

(3.112), we substitute the values from (3.110) i.e. 𝑝 = 𝐻𝑢 = −𝜁−1𝜒 and 𝑟 = 𝐻𝑤 =

𝑃 (𝑤−1/2)(𝜂𝜏𝑒+ 𝜃𝑟). Since 𝑃 (𝑤1/2) = 𝑃 (𝑤−1/2)−1, we have:

𝑟 = 𝑃 (𝑤1/2)𝐻𝑤 = 𝜂𝜏𝑒+ 𝜃𝑟, (3.113a)

tr(𝑟) = 𝑑𝜂𝜏 + 𝜃 tr(𝑟). (3.113b)

We have:

𝐻̄𝑢 = (𝜁2 + 𝑑−1𝜙2)(−𝜁−1𝜒) + 𝑑−1𝜙(𝑑𝜂𝜏 + 𝜃 tr(𝑟)) (3.114a)

= −𝜁𝜒+ 𝜙𝜂(𝜏 − 𝜒) + 𝑑−1𝜙𝜃 tr(𝑟) (3.114b)

= −𝜁(𝜒− 𝜂 tr(𝑟)) (3.114c)

= 𝑝, (3.114d)

and:

𝐻̄𝑤 = 𝑃 (𝑤1/2)(𝑑−1(−𝜙𝜁−1𝜒+ 𝜂𝜃−1(𝑑𝜂𝜏 + 𝜃 tr(𝑟)))𝑒+ 𝜃−1(𝜂𝜏𝑒+ 𝜃𝑟)) (3.115a)

= 𝑃 (𝑤1/2)(𝜂(−𝜏 + 𝜂𝜃−1𝜏 + 𝜃−1𝜏)𝑒+ 𝑟) (3.115b)

= 𝑃 (𝑤1/2)(𝑟) (3.115c)

= 𝑟. (3.115d)

Hence (3.112) is the unique inverse operator of (3.110).

We note the polynomial-like structure of the oracles. In particular, the 𝑤 compo-
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nents of the 𝑔, 𝐻, and 𝑇 oracles are computed by applying 𝑃 (𝑤−1/2) to a polynomial

in 𝑟, of degree zero for 𝑔, degree one for 𝐻, and degree two for 𝑇 . Analogously to 𝐻,

its inverse 𝐻̄ is computed by applying 𝑃 (𝑤1/2) to a polynomial of degree one in 𝑟. This

structure leads to simple, efficient, and numerically-stable implementations. We also

note the structural similarity (ignoring constants) between the 𝑢 and 𝑤 components

of these oracles and those of the negative log-determinant barrier in Section 3.5.4. In

both cases, the oracles can be computed without an explicit eigendecomposition if

it is possible to apply 𝑃 (𝑤1/2) and 𝑃 (𝑤−1/2) directly. For example for 𝑉 = S𝑑 and

𝑉 = H𝑑, only a Cholesky factorization of 𝑤 is needed.

3.8 Examples and computational testing

We outline our implementations of the MMD cone and the log-determinant and root-

determinant cones in Hypatia in Section 3.8.1. In Sections 3.8.4 to 3.8.4, we present

example problems with simple, natural formulations (NFs) in terms of these cones.

Using techniques we describe in Section 3.8.2, we construct equivalent extended for-

mulations (EFs) that can be recognized by MOSEK 9 or ECOS. Our computational

benchmarks follow the methodology we describe in Section 3.8.3 and show that Hy-

patia often solves the NFs much more efficiently than Hypatia, MOSEK, or ECOS

solve the EFs. Finally, in Section 3.8.5, we exemplify the computational impact of

efficient oracle procedures by comparing the performance of our closed-form inverse

Hessian product formula in (3.64) with that of a naive direct solve using the explicit

Hessian matrix.

3.8.1 Spectral function cones in Hypatia

Recall Hypatia’s generic cone interface allows specifying a vectorized proper cone

𝒦 ⊂ R𝑞 for some dimension 𝑞. Recall that for the real symmetric PSD cone S𝑑
⪰, we

use the standard svec transformation, which rescales and stores only the elements of

the matrix triangle in a vector of dimension 𝑑(𝑑 + 1)/2. For the complex Hermitian

PSD cone H𝑑
⪰, we perform a modified svec transformation to a 𝑑2-dimensional vector,
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storing each real diagonal element as a single element and each complex off-diagonal

element in the triangle as two (rescaled) consecutive real elements (the real part

followed by the imaginary part). These transformations preserve inner products and

the self-duality of cones of squares.

We adapt these transformations to enable vectorization of spectral function cones.

For example, for the epigraph-perspective cone 𝒦𝑝 in (3.30), the vectorization is

(𝑢, 𝑣, vec(𝑤)) ∈ R2+𝑞, where vec(𝑤) ∈ R𝑞 is the appropriate vectorization of 𝑤 ∈ 𝒬.

Fortunately, the dual cone of this vectorized cone is the analogous vectorization of

the dual cone 𝒦*
𝑝 in (3.31).

For the domains R𝑑, S𝑑, and H𝑑, we implement vectorizations of the MMD cone

𝒦MMD, the log-determinant cone 𝒦logdet, and the root-determinant cone (𝒦rtdet).1

This allows the user to model with these cones or their dual cones in Hypatia. As

we discuss at the end of Sections 3.5.4 and 3.7.4, for 𝒦logdet and 𝒦rtdet the oracle

procedures are quite specialized, for example we compute a Cholesky factorization

rather than an eigendecomposition for the S𝑑 and H𝑑 domains.

For 𝒦MMD, we predefine the MMD functions in Table 3.1 (e.g. NegEntropy). Re-

call that 𝒦*
MMD in (3.78) is defined using the convex conjugate of the MMD function;

in the examples below we suffix the MMD function names with Conj (e.g. NegEn-

tropyConj ) to indicate use of the convex conjugate function and 𝒦*
MMD. We write

NegLogdet or NegRtdet for the negative log-determinant or negative root-determinant

function, the epigraph of which we represent using 𝒦logdet or 𝒦rtdet. In our examples,

we choose not to use 𝒦*
rtdet or 𝒦*

logdet (or equivalently, 𝒦*
MMD with NegLogConj ), be-

cause these particular dual cones provide little additional modeling power over their

primal cones.

1Our𝒦logdet implementation is for the hypograph of the log-determinant, rather than the epigraph
of negative log-determinant considered in Section 3.5.4. This only requires minor changes to the
oracle derivations and the LHSCB proof from Section 3.6.4 for validity.
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3.8.2 Building natural and extended formulations

To assess the computational value of our new cones and efficient oracles, we compare

the performance of Hypatia on NFs over 𝒦MMD, 𝒦logdet, and 𝒦rtdet against that of

other conic IPM solvers on equivalent EFs. ECOS [Domahidi et al., 2013] is another

open-source conic IPM solver, but it only supports nonnegative, second-order, and

three-dimensional exponential cones. Recall MOSEK version 9 [MOSEK ApS, 2020]

supports the same cones as ECOS as well as three-dimensional power cones and real

symmetric PSD cones (the standard cones). To build the standard cone EFs, we use

a variety of formulation techniques, some of which we discuss and analyze in Coey

et al. [2021d].2

For 𝑉 = R𝑑, our EFs are constructed as follows. The EFs for NegLog, NegEn-

tropy, NegEntropyConj, and NegRtdet use 𝑑 exponential cones. The EFs for NegSqrt

and NegSqrtConj use 𝑑 three-dimensional second-order cones. The EFs for Power,

NegPower, PowerConj, and NegPowerConj use 𝑑 power cones. The example in Sec-

tion 3.8.4 uses 𝑉 = R𝑑.

For 𝑉 = S𝑑, our EFs are constructed as follows. For most spectral functions, we

adapt the EF from Ben-Tal and Nemirovski [2001, Proposition 4.2.1], which requires

using an EF from the 𝑉 = R𝑑 case for the corresponding spectral function, and

adding constraints on the sum of the 𝑖 largest eigenvalues of a matrix for each 𝑖 ∈ J𝑑K.

This is a large formulation with many additional variables and PSD constraints.

For NegLog and NegRtdet, we use a much simpler EF from Ben-Tal and Nemirovski

[2001, Example 18.d]. Since NegSqrtConj is a scaling of the inverse function (see

Table 3.1), a Schur complement representation allows us to use an EF with one PSD

cone constraint. For 𝑉 = H𝑑, we reformulate any complex PSD cone constraint to a

real PSD cone constraint with twice the side dimension [MOSEK ApS, 2020, Section

6.2.7]. The examples in Section 3.8.4 use 𝑉 = S𝑑 and the example in Section 3.8.4

uses 𝑉 = H𝑑.

2The EFs build automatically via the functions in https://github.com/chriscoey/Hypatia.
jl/blob/master/examples/spectral_functions_JuMP.jl.
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3.8.3 Computational methodology

We perform all instance generation, computational experiments, and results analysis

with Ubuntu 21.10, Julia 1.8.0-DEV.862, and Hypatia 0.5.3.3 We use dedicated hard-

ware with an AMD Ryzen 9 3950X 16-core processor (32 threads) and 128GB of RAM.

For each example problem in Sections 3.8.4 to 3.8.4, we generate random instances

of a range of sizes, using JuMP 0.21.10 and MathOptInterface v0.9.22. All instances

are primal-dual feasible, so we expect solvers to return optimality certificates.

We use the conic PDIPM solvers in MOSEK version 9 and ECOS version 2.0.5

(with no features disabled). Hypatia uses the default algorithmic implementation that

we describe in Chapter 2 (the combined directions method with the QR-Cholesky

linear system procedure). We limit each solver to 16 threads and set a solve time

limit of 1800 seconds. We set relative feasibility and optimality gap tolerances to

10−7 and absolute optimality gap tolerances to 10−10.

For each instance, the relative difference between the objective values of the

formulation/solver combinations that converge never exceeds 10−4. For each in-

stance/formulation/solver combination that returns a solution, we measure the maxi-

mum violation 𝜖 of the primal-dual optimality conditions in Coey et al. [2021d, Equa-

tion 23]. In Figures 3-2 to 3-5, we plot solve times in seconds against an instance size

parameter, excluding solves for which 𝜖 > 10−5. Hypatia-NF (i.e. Hypatia solving

the NF) is faster than any EF solver (Hypatia-EF, MOSEK-EF, ECOS-EF) across

all instance sizes and spectral functions tested for each example, and always scales to

larger sizes.

3.8.4 Examples and results

Nonparametric distribution estimation

Suppose we have a random variable 𝑋 taking values in the finite set {𝛼𝑖}𝑖∈J𝑑K. We

seek a probability distribution 𝜌 ∈ R𝑑 that minimizes a convex spectral function 𝜙,
3Benchmark scripts and instructions for reproducing and analyzing results are available at https:

//github.com/chriscoey/Hypatia.jl/tree/master/benchmarks/natvsext. A raw output CSV
file and detailed results tables are at https://github.com/chriscoey/Hypatia.jl/wiki.
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given some prior information expressed with 𝑑/2 linear equality constraints. Adapting

Boyd and Vandenberghe [2004, Section 7.2], the problem is:

min𝜌∈R𝑑 𝜙(𝜌) : (3.116a)

tr(𝜌) = 𝑑, (3.116b)

𝐴𝜌 = 𝑏. (3.116c)

For four spectral functions 𝜙 on R𝑑
≥ (with EFs that ECOS can recognize) and a range

of sizes 𝑑, we build random instances of (3.116). The solver timings are summarized in

Figure 3-2. Note that for NegRtdet, no solve times are plotted for MOSEK-EF because

the optimality condition violations 𝜖 are too large (see Section 3.8.3); tightening

MOSEK’s tolerance options improves these violations, though in either case MOSEK-

EF is significantly slower than Hypatia-NF. We do not plot results for NegLogdet

(the 𝒦logdet formulation using the specialized oracles from Section 3.5.4) as they are

nearly identical to the results for 𝒦MMD/NegLog ; however, the efficiency benefits of

NegLogdet are realized for the matrix domain in Section 3.8.4.

Experiment design

We formulate a continuous relaxation of the experiment design problem, similar to

Boyd and Vandenberghe [2004, Section 7.5]. The variable 𝜌 ∈ R2𝑑 is the number

of trials to run for each of 2𝑑 experiments that are useful for estimating a vector in

R𝑑. The experiments are described by the columns of 𝑉 ∈ R𝑑×2𝑑 and we require

that 2𝑑 experiments are performed. We minimize a convex spectral function of the

information matrix:

min𝜌∈R2𝑑 𝜙(𝑉 Diag(𝜌)𝑉 ⊤) : (3.117a)

tr(𝜌) = 2𝑑, (3.117b)

𝜌 ≥ 0, (3.117c)

118



0 10,000 20,000

10−1

100

101

102

103

𝑑

ti
m

e
(s

)
NegRtdet

0 10,000 20,000

10−1

100

101

102

103

𝑑

NegLog

0 10,000 20,000

10−1

100

101

102

103

𝑑

ti
m

e
(s

)

NegEntropy

0 10,000 20,000

10−1

100

101

102

103

𝑑

NegSqrt

Hypatia-NF Hypatia-EF MOSEK-EF ECOS-EF

Figure 3-2: Nonparametric distribution estimation solver performance.

where 𝑉 ⊤ is the transpose of 𝑉 and Diag(𝜌) is the diagonal matrix of 𝜌. For four

different 𝜙 on S𝑑
⪰ and various 𝑑, we build random instances of (3.117). The solver

timings are summarized in Figure 3-3. Since ECOS does not support S𝑑
⪰, we only

compare with MOSEK. The Hypatia-NegLogdet curve indicates that Hypatia with

𝒦logdet is somewhat more efficient than Hypatia with the equivalent 𝒦MMD/NegLog

formulation; this is due to our oracle specializations in Section 3.5.4 and our imple-

mentation using a Cholesky factorization rather than an eigendecomposition.
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Figure 3-3: Experiment design solver performance.

Central polynomial Gram matrix

Suppose we have a polynomial of degree 2𝑘 in 𝑚 variables. Let 𝐿 =
(︀
𝑚+𝑘
𝑚

)︀
and

𝑈 =
(︀
𝑚+2𝑘
𝑚

)︀
, and let 𝑏 ∈ R𝑈 be the monomial coefficients of the polynomial. We seek

a Gram matrix 𝜌 ∈ S𝐿 corresponding to 𝑏 [Parrilo, 2012, Lemma 3.33] that minimizes
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a convex spectral function 𝜙:

min𝜌∈S𝐿 𝜙(𝜌) : (3.118a)

𝐶 vec(𝜌) = 𝑏, (3.118b)

where the matrix 𝐶 ∈ R𝑈×𝐿(𝐿+1)/2 maps the Gram matrix to the (lower-dimensional)

polynomial coefficient space. We build random instances of (3.118), varying 𝑚 ∈

{1, 4} and 𝑘 (depending on 𝑚). Recall from Table 3.1 that ConjNegEntr and ConjPower-

1.5 are defined on S𝑑, but NegEntr and MatPower12(1.5) are only defined on S𝑑
⪰,

which implicitly requires that 𝑏 be a sum of squares polynomial and hence globally

nonnegative. The solver timings are summarized in Figure 3-4 (a log-log plot).

Classical-quantum channel capacity

We compute the capacity of a classical-quantum channel, adapting the formulation

from Sutter et al. [2015, Example 2.16] and Fawzi and Fawzi [2018, Section 3.1]. The

variable 𝜌 ∈ R𝑑 is a probability distribution on the 𝑑-dimensional input alphabet.

For 𝑖 ∈ J𝑑K, let 𝑃𝑖 ∈ H𝑑
⪰ be fixed density matrices satisfying tr(𝑃𝑖) = 1. Letting 𝜙

represent the trace of NegEntropy on H𝑑
⪰, the formulation is:

min𝜌∈R𝑑 𝜙
(︀∑︀

𝑖∈J𝑑K 𝜌𝑖𝑃𝑖

)︀
−
∑︀

𝑖∈J𝑑K 𝜌𝑖𝜙(𝑃𝑖) : (3.119a)

tr(𝜌) = 1, (3.119b)

𝜌 ≥ 0. (3.119c)

We generate random instances of (3.119), varying 𝑑. The solver timings are summa-

rized in Figure 3-5.

3.8.5 Inverse Hessian product oracle

To illustrate the importance of our efficient and numerically stable oracle procedures,

we compare the performance of two different approaches to computing the inverse

Hessian product oracle 𝐻̄ in (3.38c) for 𝒦MMD cones. The naive approach is to
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Figure 3-4: Central polynomial Gram matrix solver performance.

compute the explicit Hessian matrix, perform a Cholesky factorization, and use a

direct linear solve. Alternatively, we derive a closed-form formula for 𝐻̄ in (3.64),

since 𝒦MMD is a special case of 𝒦𝑝 with a separable spectral function. This formula

is essentially as easy to compute as the Hessian product oracle 𝐻 in (3.47) (which

does not use an explicit Hessian matrix). In Table 3.2, we compare the worst-case

memory and time complexities for these procedures.

To compare the practical performance of these procedures, we perform computa-
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closed-form formula factorize and solve

𝑉 dim(𝒦MMD) memory time memory time

R𝑑 𝑂(𝑑) 𝑂(𝑑) 𝑂(𝑑) 𝑂(𝑑2) 𝑂(𝑑3)
S𝑑 or H𝑑 𝑂(𝑑2) 𝑂(𝑑2) 𝑂(𝑑3) 𝑂(𝑑4) 𝑂(𝑑6)

Table 3.2: Cone dimension and worst-case complexities for the two inverse Hessian
product procedures.

tional experiments using Hypatia. We first solve NF instances of a range of sizes for

the examples from Section 3.8.4 (with 𝑉 = R𝑑) and Section 3.8.4 (with 𝑉 = S𝑑), using

𝒦MMD with the NegEntropy function. For each instance, at Hypatia’s final PDIPM

iterate, we take the direction 𝑟 = 𝑔 (i.e. the gradient oracle in (3.38a) at the iterate)

and compute 𝐻̄ for this direction using both procedures. To measure the numerical

accuracy of each procedure, we compute 𝜖 := |1 − 𝜈−1⟨𝐻̄, 𝑔⟩|, which measures the

violation of a particular identity [Nesterov and Todd, 1997, Equation 2.5] satisfied

by a logarithmically homogeneous function such as the LHSCB Γ with parameter

𝜈 = 2 + 𝑑. We also time each procedure, excluding Hessian memory allocation time

for the factorization-based procedure.

Our results are displayed in Figure 3-6. The Cholesky factorization fails at

𝑑 = 3000 for the R𝑑 example and at 𝑑 = 20, 50, 200 for the S𝑑 example; when

this occurs, Hypatia uses a Bunch-Kaufman factorization as a fallback (note Julia
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calls performant OpenBLAS routines for the Cholesky and Bunch-Kaufman factor-

izations). Note that we loosen the convergence tolerances specified in Section 3.8.3

by a factor of 100, so that the factorization-based procedure fails less often. These

comparisons demonstrate that our closed-form formula generally allows computing 𝐻̄

faster and with greater numerical accuracy. Also, the closed-form procedure is much

more memory efficient than the factorization-based procedure, as it never forms an

explicit Hessian matrix.
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Figure 3-6: For instances of two examples using 𝒦MMD with NegEntropy, the speed
and logarithmic homogeneity condition violation (at the final iterate) for the two
inverse Hessian product procedures.
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Chapter 4

Oracles for slices of the PSD cone

This chapter is based on an appendix from the submitted paper Coey et al. [2021c].

4.1 Intersections of linear slices of the PSD cone

Many of the cones in Hypatia, including some polynomial cones that we focus on in

Chapter 5, can be described as a linear slice of the PSD cone. The aim of this chapter

is to describe efficient techniques for evaluating the oracles of cones in this class for

the algorithm from Chapter 2. These techniques are also implemented in practice for

the cones in Chapter 5.

First, we consider a proper cone 𝒦 ⊂ R𝑞 that is an inverse linear image (or slice)

of the PSD cone S𝚥
⪰ of side dimension 𝚥. Suppose:

𝒦 := {𝑠 ∈ R𝑞 : Λ(𝑠) ⪰ 0}, (4.1)

where Λ : R𝑞 → S𝚥 is a linear operator, with adjoint linear operator Λ* : S𝚥 → R𝑞.

Then the dual cone can be characterized as:

𝒦* := {𝑠 ∈ R𝑞 : ∃𝑆 ⪰ 0, 𝑠 = Λ*(𝑆)}. (4.2)

We note that for 𝒦⪰ (the self-dual vectorized PSD cone), we can let 𝑞 = sd(𝚥),

Λ(𝑠) = mat(𝑠), and Λ*(𝑆) = vec(𝑆). Given a point 𝑠 ∈ R𝑞, strict feasibility for 𝒦 can
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be checked, for example, by attempting a Cholesky factorization Λ(𝑠) = 𝐿𝐿⊤, where

𝐿 is lower triangular.

For 𝒦 we have the LHSCB 𝑓(𝑠) = − logdet(Λ(𝑠)) with parameter 𝜈 = 𝚥. Given

a point 𝑠 ∈ int(𝒦), we have Λ(𝑠) ∈ S𝚥
≻ and its inverse Λ−1(𝑠) ∈ S𝚥

≻. For a direction

𝛿 ∈ R𝑞, for 𝑓 at 𝑠 we can write the gradient, and the Hessian and TOO applied to 𝛿,

as (compare to Papp and Yildiz [2019, Section 3]):

𝑔(𝑠) = −Λ*(Λ−1(𝑠)), (4.3a)

𝐻(𝑠)𝛿 = Λ*(Λ−1(𝑠)Λ(𝛿)Λ−1(𝑠)), (4.3b)

T(𝑠, 𝛿) = Λ*(Λ−1(𝑠)Λ(𝛿)Λ−1(𝑠)Λ(𝛿)Λ−1(𝑠)). (4.3c)

If we have, for example, a Cholesky factorization Λ(𝑠) = 𝐿𝐿⊤ (computed during the

feasibility check), then the oracles in (4.3) are easy to compute if Λ and Λ* are easy

to apply. We can compute the TOO (4.3c) using the following steps:

𝑌 := 𝐿−1Λ(𝛿)Λ−1(𝑠), (4.4a)

𝑍 := 𝑌 ⊤𝑌 = Λ−1(𝑠)Λ(𝛿)Λ−1(𝑠)Λ(𝛿)Λ−1(𝑠), (4.4b)

T(𝑠, 𝛿) = Λ*(𝑍). (4.4c)

We note (4.4a) can be computed using back-substitutions with 𝐿, and (4.4b) is

a simple symmetric outer product. We use this approach to derive simple TOO

procedures for 𝒦LMI in Section 4.2 and for 𝒦*
SOS and 𝒦*

matSOS in Section 4.3.

Now we consider the more general case of a cone 𝒦 that can be characterized as

an intersection of slices of PSD cones, for example 𝒦*
SOS and 𝒦*

matSOS when 𝑟 > 1.

Suppose:

𝒦 := {𝑠 ∈ R𝑞 : Λ𝑙(𝑠) ⪰ 0,∀𝑙 ∈ J𝑟K}, (4.5)

where Λ𝑙 : R𝑞 → S𝚥𝑙 , for 𝑙 ∈ J𝑟K. Then the dual cone can be characterized as:

𝒦* :=
{︀
𝑠 ∈ R𝑞 : ∃𝑆1, . . . , 𝑆𝑟 ⪰ 0, 𝑠 =

∑︀
𝑙∈J𝑟K Λ

*
𝑙 (𝑆𝑙)

}︀
. (4.6)
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Feasibility for 𝒦 can be checked by performing 𝑟 Cholesky factorizations. If we let

𝑓𝑙(𝑠) = − logdet(Λ𝑙(𝑠)),∀𝑙 ∈ J𝑟K, then 𝑓(𝑠) =
∑︀

𝑙∈J𝑟K 𝑓𝑙(𝑠) is an LHSCB for 𝒦 with

parameter 𝜈 =
∑︀

𝑙∈J𝑟K 𝚥𝑙. The oracles 𝑔(𝑠), 𝐻(𝑠)𝛿 (and the explicit Hessian matrix),

and T(𝑠, 𝛿) can all be computed as sums over 𝑙 ∈ J𝑟K of the terms in (4.3c).

4.2 LMI cone

We denote the inner product of 𝑋, 𝑌 ∈ S𝑠 as ⟨𝑋, 𝑌 ⟩ = tr(𝑋𝑌 ) ∈ R, computable in

order of 𝑠2 time. For 𝒦LMI parametrized by 𝑃𝑖 ∈ S𝑠,∀𝑖 ∈ J𝑑K, we define for 𝑤 ∈ R𝑑

and 𝑊 ∈ S𝑠:

Λ(𝑤) :=
∑︀

𝑖∈J𝑑K 𝑤𝑖𝑃𝑖 ∈ S𝑠, (4.7a)

Λ*(𝑊 ) := (⟨𝑃𝑖,𝑊 ⟩)𝑖∈J𝑑K ∈ R𝑑. (4.7b)

Our implementation uses specializations of (4.3) and (4.4) for 𝒦LMI. For 𝑤 ∈

int(𝒦LMI) and direction 𝛿 ∈ R𝑑, using the Cholesky factorization Λ(𝑤) = 𝐿𝐿⊤, we

compute:

𝑄𝑖 := 𝐿−1𝑃𝑖𝐿
−⊤ ∈ S𝑠 ∀𝑖 ∈ J𝑑K, (4.8a)

𝑔(𝑤) = (− tr(𝑄𝑖))𝑖∈J𝑑K, (4.8b)

𝑅 :=
∑︀

𝑗∈J𝑑K 𝛿𝑗𝑄𝑗 ∈ S𝑠, (4.8c)

𝐻(𝑤)𝛿 = (⟨𝑄𝑖, 𝑅⟩)𝑖∈J𝑑K, (4.8d)

T(𝑤, 𝛿) = (⟨𝑄𝑖, 𝑅
⊤𝑅⟩)𝑖∈J𝑑K, (4.8e)

and we compute the explicit Hessian oracle as:

(𝐻(𝑤))𝑖,𝑗 = ⟨𝑄𝑖, 𝑄𝑗⟩ ∀𝑖, 𝑗 ∈ J𝑑K. (4.9)

The symmetric form of 𝑄𝑖 and the use of a symmetric outer product 𝑅⊤𝑅 in (4.8e)

are beneficial for efficiency and numerical performance.
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4.3 Matrix and scalar WSOS dual cones

Recall from Chapter 2 that Hypatia uses LHSCBs for 𝒦*
SOS,𝒦*

matSOS, because LHSCBs

for 𝒦SOS,𝒦matSOS with tractable oracles are not known. Since the scalar WSOS dual

cone 𝒦*
SOS is a special case of the matrix WSOS dual cone 𝒦*

matSOS with 𝑡 = 1, we

only consider 𝒦*
matSOS here. In general, 𝒦*

matSOS is an intersection of 𝑟 slices of 𝒦⪰

(see (4.5)), so the gradient, Hessian, and TOO oracles are all additive; for simplicity,

we only consider 𝑟 = 1 (and 𝑠1 = 𝑠, 𝑃1 = 𝑃 ) below.

To enable convenient vectorization, we define 𝜌𝑖,𝑗 for indices 𝑖, 𝑗 ≥ 1 as:

𝜌𝑖,𝑗 :=

⎧⎪⎨⎪⎩1 if 𝑖 = 𝑗,

√
2 otherwise.

(4.10)

For 𝒦*
matSOS parametrized by 𝑃 ∈ R𝑑×𝑠 and 𝑡 ≥ 1, we define for 𝑤 ∈ Rsd(𝑡)𝑑 and

𝑊 ∈ S𝑠𝑡:

Λ(𝑤) :=
[︀
𝑃⊤Diag

(︀
𝜌−1
𝑖,𝑗 𝑤max(𝑖,𝑗),min(𝑖,𝑗),:

)︀
𝑃
]︀
𝑖,𝑗∈J𝑡K ∈ S𝑠𝑡, (4.11a)

Λ*(𝑊 ) := (𝜌𝑖,𝑗 diag(𝑃 (𝑊 )𝑖,𝑗𝑃
⊤))𝑖∈J𝑡K,𝑗∈J𝑖K ∈ Rsd(𝑡)𝑑, (4.11b)

where 𝑤 = (𝑤𝑖,𝑗,:)𝑖∈J𝑡K,𝑗∈J𝑖K and 𝑤𝑖,𝑗,: ∈ R𝑑 is the contiguous slice of 𝑤 corresponding

to the interpolant basis values in the (𝑖, 𝑗)th (lower triangle) position, matrix (𝑆)𝑖,𝑗 is

the (𝑖, 𝑗)th block in a block matrix 𝑆 (with blocks of equal dimension), and [𝑆𝑖,𝑗]𝑖,𝑗∈J𝑡K

is the symmetric block matrix with matrix 𝑆𝑖,𝑗 in the (𝑖, 𝑗)th block.

We implement efficient and numerically stable specializations of the oracles in

(4.3) and (4.4). Suppose we have 𝑤 ∈ int(𝒦*
matSOS) and direction 𝛿 ∈ Rsd(𝑡)𝑑, and

a Cholesky factorization Λ(𝑤) = 𝐿𝐿⊤. For each 𝑖, 𝑗 ∈ J𝑡K : 𝑖 ≥ 𝑗 and 𝑝 ∈ J𝑑K, we
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implicitly compute oracles according to:

(𝑄)𝑖,𝑗,𝑝 := ((𝐿−1)𝑖,𝑗𝑃
⊤)𝑒𝑝 ∈ R𝑠, (4.12a)

(𝑔(𝑤))𝑖,𝑗,𝑝 = −𝜌𝑖,𝑗𝑄⊤
𝑖,:,𝑝𝑄:,𝑗,𝑝, (4.12b)

(𝑅)𝑖,𝑗,𝑝 := (𝐿−1Λ(𝛿)(𝐿−1)⊤𝑄)𝑖,𝑗𝑒𝑝 ∈ R𝑠, (4.12c)

(𝐻(𝑤)𝛿)𝑖,𝑗,𝑝 = 𝜌𝑖,𝑗𝑄
⊤
𝑖,:,𝑝𝑅:,𝑗,𝑝, (4.12d)

(T(𝑤, 𝛿))𝑖,𝑗,𝑝 = 𝜌𝑖,𝑗𝑅
⊤
𝑖,:,𝑝𝑅:,𝑗,𝑝. (4.12e)

Letting 𝑄2
𝑖,𝑗 := (𝑄⊤𝑄)𝑖,𝑗 ∈ S𝑑, we compute the Hessian oracle according to:

(𝐻(𝑤))(𝑖,𝑗,:),(𝑘,𝑙,:) =
1
2
𝜌𝑖,𝑗𝜌𝑘,𝑙

(︀
𝑄2

𝑖,𝑘 ∘𝑄2
𝑗,𝑙 +𝑄2

𝑖,𝑙 ∘𝑄2
𝑗,𝑘

)︀
∈ S𝑑 ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ J𝑡K, (4.13)

where 𝑋 ∘ 𝑌 ∈ S𝑑 denotes the Hadamard (elementwise) product of 𝑋, 𝑌 ∈ S𝑑.

4.4 Sparse PSD cone

Let 𝒮 = ((𝑖𝑙, 𝑗𝑙))𝑙∈J𝑑K be a collection of row-column index pairs defining the sparsity

pattern of the lower triangle of a symmetric matrix of side dimension 𝑠 (including

all diagonal elements). We do not require 𝒮 to be a chordal sparsity pattern (unlike

Andersen et al. [2013], Burer [2003]), as this restriction is not necessary for the oracles

Hypatia uses. Note 𝑠 ≤ 𝑑 ≤ sd(𝑠). For 𝒦sPSD parametrized by 𝒮, we define Λ : R𝑑 →

S𝑠 as the linear operator satisfying, for all 𝑖, 𝑗 ∈ J𝑠K : 𝑖 ≥ 𝑗:

(Λ(𝑤))𝑖,𝑗 :=

⎧⎪⎨⎪⎩𝜌−1
𝑖,𝑗 𝑤𝑙 if 𝑖 = 𝑖𝑙 = 𝑗 = 𝑗𝑙,

0 otherwise,
(4.14)

where 𝜌𝑖,𝑗 is given by (4.10). Then Λ* is the vectorized projection onto 𝒮, i.e. for

𝑊 ∈ S𝑠:

Λ*(𝑊 ) := (𝜌𝑖,𝑗𝑊𝑖,𝑗)(𝑖,𝑗)∈𝒮 ∈ R𝑑. (4.15)
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Consider 𝑤 ∈ int(𝒦sPSD) and direction 𝛿 ∈ R𝑑. The gradient (4.3a) and Hessian

product (4.3b) for 𝒦sPSD can be computed using Andersen et al. [2013, Algorithms

4.1 and 5.1]. To derive the TOO, we use the fact that:

− 2T(𝑤, 𝛿) = ∇3𝑓(𝑤)[𝛿, 𝛿] = 𝑑2

𝑑𝑡2
∇𝑓(𝑤 + 𝑡𝛿)

⃒⃒
𝑡=0

. (4.16)

In order to succinctly describe our TOO approach as an extension of the pro-

cedures in Andersen et al. [2013], we describe an approach based on a sparse LDL

factorization of Λ(𝑤). However, our current implementation in Hypatia uses a sparse

Cholesky (𝐿𝐿⊤) factorization, which is very similar to the LDL-based approach

here. We compute the sparse Cholesky factors using Julia’s SuiteSparse wrapper

of CHOLMOD [Chen et al., 2008]. We note that Hypatia implements a supernodal

generalization (see Andersen et al. [2013, Section 7]) of the TOO procedure we de-

scribe below. Before we describe the TOO procedure, we repeat useful definitions

from Andersen et al. [2013], define higher order derivative terms, and differentiate

several equations that are used for the gradient and Hessian oracles. As discussed in

Section 2.5, Hypatia computes the feasibility check and gradient oracles before the

TOO, and our TOO procedure reuses cached values computed for these oracles.

We define:

𝑅 := Λ(∇𝑓(𝑤 + 𝑡𝛿)). (4.17)

Let 𝐿𝐷𝐿⊤ = Λ(𝑤) be a sparse LDL factorization, i.e. 𝐿 is a sparse unit lower tri-

angular matrix and 𝐷 is a positive definite diagonal matrix. The sparsity pattern of

𝐿 is associated with an elimination tree [Andersen et al., 2013, Section 2], and each

column of 𝐿 corresponds to a node of this tree. Let ℐ𝑘 be the ordered row indices of

nonzeros below the diagonal in column 𝑘 of 𝐿, and let 𝒥𝑘 = ℐ𝑘∪{𝑘}. Let ch(𝑖) denote

the children of node 𝑖 in the tree. For an index set ℐ let ℐ(𝑖) denote the 𝑖th element.

For index sets 𝒥 ⊂ ℐ, we define 𝐸ℐ,𝒥 ∈ R|ℐ|×|𝒥 | satisfying, 𝑖 ∈ J|ℐ|K, 𝑗 ∈ J|𝒥 |K:

(𝐸ℐ,𝒥 )𝑖,𝑗 :=

⎧⎪⎨⎪⎩1 if ℐ(𝑖) = 𝒥 (𝑗),

0 otherwise.
(4.18)
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Let 𝑈𝑖 be the update matrix for node 𝑖 (see Andersen et al. [2013, Equation 14]):

𝑈𝑖 := −
∑︀

𝑘∈ch(𝑖)∪{𝑖}𝐷𝑘,𝑘𝐿ℐ𝑖,𝑘𝐿
⊤
ℐ𝑖,𝑘. (4.19)

Let 𝐷̇, 𝐿̇, 𝑈̇ , 𝑅̇ and 𝐷̈, 𝐿̈, 𝑈̈ , 𝑅̈ denote the first and second derivatives of 𝐷, 𝐿, 𝑈 ,

𝑅 with respect to the linearization variable 𝑡 in (4.16). For convenience, we let:

𝐿̄𝑗 :=

⎡⎣ 1 0

−𝐿ℐ𝑗 ,𝑗 ℐ

⎤⎦ . (4.20)

Suppose we have computed 𝐷̇, 𝐿̇, 𝑈̇ according to Andersen et al. [2013, Equation

30]. Differentiating Andersen et al. [2013, Equation 30] once with respect to 𝑡 gives:

⎡⎢⎣𝐷̈𝑗,𝑗 𝑃⊤
𝑗

𝑃𝑗 2𝐷𝑗,𝑗𝐿̇ℐ𝑗 ,𝑗𝐿̇
⊤
ℐ𝑗 ,𝑗 + 𝑈̈𝑗

⎤⎥⎦ = 𝐿̄𝑗

(︁∑︀
𝑖∈ch(𝑗) 𝐸𝒥𝑗 ,ℐ𝑖𝑈̈𝑖𝐸

⊤
𝒥𝑗 ,ℐ𝑖

)︁
𝐿̄⊤
𝑗 , (4.21)

where 𝑃𝑗 := 2𝐷̇𝑗,𝑗𝐿̇ℐ𝑗 ,𝑗 +𝐷𝑗,𝑗𝐿̈ℐ𝑗 ,𝑗 for convenience. This allows us to compute 𝐷̈, 𝐿̈,

𝑈̈ . Andersen et al. [2013, Equations 21 and 22] show that:

𝑅ℐ𝑗 ,𝑗 = −𝑅ℐ𝑗 ,ℐ𝑗𝐿ℐ𝑗 ,𝑗, (4.22a)⎡⎣𝑅𝑗,𝑗 𝑅⊤
ℐ𝑗 ,𝑗

𝑅ℐ𝑗 ,𝑗 𝑅ℐ𝑗 ,ℐ𝑗

⎤⎦⎡⎣ 1

𝐿ℐ𝑗 ,𝑗

⎤⎦ =

⎡⎣𝐷−1
𝑗,𝑗

0

⎤⎦ , (4.22b)

for each node 𝑗. Differentiating (4.22a) once with respect to 𝑡 gives:

𝑅̇ℐ𝑗 ,𝑗 = −𝑅ℐ𝑗 ,ℐ𝑖𝐿̇ℐ𝑗 ,𝑗 − 𝑅̇ℐ𝑗 ,ℐ𝑗𝐿ℐ𝑗 ,𝑗. (4.23)

Differentiating (4.22b) twice and substituting (4.22a) and (4.23), we have:

⎡⎢⎣ 𝑅̈𝑗,𝑗 𝑅̈⊤
ℐ𝑗 ,𝑗

𝑅̈ℐ𝑗 ,𝑗 𝑅̈ℐ𝑗 ,ℐ𝑗

⎤⎥⎦ = 𝐿̄⊤
𝑗

⎡⎢⎣2𝐷̇2
𝑗,𝑗𝐷

−3
𝑗,𝑗 − 𝐷̈𝑗,𝑗𝐷

−2
𝑗,𝑗 + 2𝐿̇⊤

ℐ𝑗 ,𝑗𝑅ℐ𝑗 ,ℐ𝑗 𝐿̇ℐ𝑗 ,𝑗 𝑄⊤
𝑗

𝑄𝑗 𝑅̈ℐ𝑗 ,ℐ𝑗

⎤⎥⎦ 𝐿̄𝑗, (4.24)
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where 𝑄𝑗 := −𝑅ℐ𝑗 ,ℐ𝑗 𝐿̈ℐ𝑗 ,𝑗 − 2𝑅̇ℐ𝑗 ,ℐ𝑗 𝐿̇ℐ𝑗 ,𝑗 for convenience. This allows us to compute

𝑅̈. Finally, by (4.16) and (4.17), we can compute the TOO as:

− 2T(𝑤, 𝛿) = Λ*(︀𝑅̈)︀
. (4.25)

We now write the high-level TOO procedure. For convenience, we let:

∆ = Λ(𝛿) ∈ S𝑠. (4.26)

Following Andersen et al. [2003], we define 𝐾 and 𝑀 as sparse matrices with the

same structure as 𝐿, satisfying for all 𝑗 ∈ J𝑠K:

𝐾𝑗,𝑗 = 𝐷̇𝑗,𝑗, (4.27a)

𝐾ℐ𝑗 ,𝑗 = 𝐷𝑗,𝑗𝐿̇ℐ𝑗 ,𝑗, (4.27b)

𝑀𝑗,𝑗 = 𝐷−2
𝑗,𝑗𝐾𝑗,𝑗, (4.27c)

𝑀ℐ𝑗 ,𝑗 = 𝐷−1
𝑗,𝑗𝑅ℐ𝑗 ,ℐ𝑗𝐾ℐ𝑗 ,𝑗. (4.27d)

The first three steps in the TOO procedure below compute 𝐷̇, 𝐿̇, 𝑈̇ , and 𝑅̇ and are

identical to steps in Andersen et al. [2013, Algorithm 5.1].

1. Iterate over 𝑗 ∈ J𝑠K in topological order, computing 𝐾𝒥𝑗 ,𝑗 and 𝑈̇𝑗 according to:

⎡⎣𝐾𝑗,𝑗 𝐾⊤
ℐ𝑗 ,𝑗

𝐾ℐ𝑗 ,𝑗 𝑈⊤
𝑗

⎤⎦ = 𝐿̄𝑗

⎛⎝⎡⎣∆𝑗,𝑗 ∆⊤
ℐ𝑗 ,𝑗

∆ℐ𝑗 ,𝑗 0

⎤⎦+
∑︀

𝑖∈ch(𝑗) 𝐸𝒥𝑗 ,ℐ𝑖𝑈
⊤
𝑖 𝐸

⊤
𝒥𝑗 ,ℐ𝑖

⎞⎠ 𝐿̄⊤
𝑗 . (4.28)

2. For 𝑗 ∈ J𝑠K, store 𝐷̇𝑗,𝑗 and 𝐿̇ℐ𝑗 ,𝑗 from (4.27a) and (4.27b), and compute 𝑀𝒥𝑗 ,𝑗

from (4.27c) and (4.27d).

3. Iterate over 𝑗 ∈ J𝑠K in reverse topological order, computing 𝑅̇𝒥𝑗 ,𝑗 according to:

⎡⎣ 𝑅̇𝑗,𝑗 𝑅̇⊤
ℐ𝑗 ,𝑗

𝑅̇ℐ𝑗 ,𝑗 𝑅̇ℐ𝑗 ,ℐ𝑗

⎤⎦ = 𝐿̄⊤
𝑗

⎡⎣𝑀𝑗,𝑗 𝑀⊤
ℐ𝑗 ,𝑗

𝑀ℐ𝑗 ,𝑗 𝑅̇ℐ𝑗 ,ℐ𝑗

⎤⎦ 𝐿̄𝑗, (4.29)
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and updating matrices 𝑅̇ℐ𝑗 ,ℐ𝑗 for each child 𝑖 ∈ ch(𝑗) of vertex 𝑗 according to:

𝑅̇ℐ𝑖,ℐ𝑖 = 𝐸⊤
𝒥𝑗 ,ℐ𝑖

⎡⎣ 𝑅̇𝑗,𝑗 𝑅̇⊤
ℐ𝑗 ,𝑗

𝑅̇ℐ𝑗 ,𝑗 𝑅̇ℐ𝑗 ,ℐ𝑗

⎤⎦𝐸𝒥𝑗 ,ℐ𝑖 . (4.30)

4. Iterate over 𝑗 ∈ J𝑠K in topological order, computing 𝐷̈𝑗,𝑗, 𝐿̈ℐ𝑗 ,𝑗, 𝑈̈𝑗 from (4.21).

5. Iterate over 𝑗 ∈ J𝑠K in reverse topological order, computing 𝑅̈𝑗,𝑗, 𝑅̈ℐ𝑗 ,𝑗, 𝑅̈ℐ𝑗 ,ℐ𝑗

from (4.24).

6. Compute T(𝑤, 𝛿) using 𝑅̈ and (4.25).

4.5 Euclidean norm cone and Euclidean norm square

cone

Although 𝒦ℓ2 ,𝒦sqr ⊂ R𝑞 are inverse linear images of S𝑞
⪰ and hence admit LHSCBs

with parameter 𝜈 = 𝑞, we use the standard LHSCBs with parameter 𝜈 = 2, which have

a different form (see Vandenberghe [2010, Section 2.2]). For 𝒦ℓ2 ,𝒦sqr, the LHSCB is

𝑓(𝑠) = − log(𝑠⊤𝐽𝑠), where 𝐽 ∈ S𝑞 is defined according to, for 𝑖, 𝑗 ∈ J𝑞K : 𝑖 ≥ 𝑗:

𝐽𝑖,𝑗 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if 𝑗 = 1 and

(︀
𝑖 = 1 for 𝒦ℓ2 or 𝑖 = 2 for 𝒦sqr

)︀
,

−1 if 𝑖 = 𝑗 and
(︀
𝑖 > 1 for 𝒦ℓ2 or 𝑖 > 2 for 𝒦sqr

)︀
,

0 otherwise.

(4.31)

Consider 𝑠 ∈ int(𝒦) and direction 𝛿 ∈ R𝑞, and let 𝐽 = (𝑠⊤𝐽𝑠)−1 > 0. The gradient,

Hessian product, and TOO oracles for 𝒦 are:

𝑔(𝑠) = −2𝐽𝐽𝑠, (4.32a)

𝐻(𝑠)𝛿 = 2𝐽(2𝐽𝐽𝑠𝑠⊤𝐽𝛿 − 𝐽𝛿), (4.32b)

T(𝑠, 𝛿) = 𝐽(𝐽𝑠𝛿⊤𝐻𝛿 +𝐻𝛿𝑠⊤𝐽𝛿 − 𝑠⊤𝐻𝛿𝐽𝛿). (4.32c)
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These oracles are computed in order of 𝑑 time. The Hessian oracle is computed in

order of 𝑑2 time as:

𝐻(𝑠) = 2𝐽(2𝐽𝐽𝑠𝑠⊤𝐽 − 𝐽). (4.33)

134



Chapter 5

Sum of squares generalizations for

conic sets

This chapter is based on the submitted paper Kapelevich et al. [2021].

5.1 Introduction

The sum of squares (SOS ) condition is commonly used as a tractable restriction of

polynomial nonnegativity. While SOS programs have traditionally been formulated

and solved using semidefinite programming (SDP), Papp and Yildiz [2019] recently

demonstrated the effectiveness of a nonsymmetric interior point algorithm in solving

SOS programs without SDP formulations. In this chapter, we focus on structured SOS

constraints that can be modeled using more specialized cones. We describe and give

barrier functions for three related cones for modeling functions of dense polynomials,

which we hope will become useful modeling primitives.

The first is the cone of SOS matrices, which is described by Coey et al. [2021d,

Section 3.13] without derivation. We show that this cone can be computationally

favorable to equally low-dimensional SOS formulations. Characterizations of univari-

ate SOS matrix cones in the context of optimization algorithms have previously been

given by Genin et al. [2003, Section 6]. However, their use of monomial or Chebyshev

bases complicates computations of oracles in an interior point algorithm [Papp and
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Yildiz, 2019, Section 3.1] and prevents effective generalizations to the multivariate

case.

The second is an SOS ℓ2-norm (SOS-L2 ) cone, which can be used to certify

pointwise membership in the second order cone for a vector with polynomial compo-

nents. The third is an SOS ℓ1-norm (SOS-L1 ) cone, which can be used to certify

pointwise membership in the epigraph set of the ℓ1-norm function. Although it is

straightforward to use SOS representations to approximate these sets, such formu-

lations introduce cones of higher dimension than the constrained polynomial vector.

We believe we are first to describe how to handle these sets in an interior point algo-

rithm without introducing auxiliary conic variables or constraints. We suggest new

barriers, with lower barrier parameters than SOS formulations allow.

In the remainder of this section we provide background on SOS polynomials and

implementation details of interior point algorithms that are required for later sections.

In Section 5.2 we describe the constraints we wish to model using each new cone,

and suggest alternative SOS formulations for comparison. In Section 5.3 we outline

how ideas introduced by Papp and Alizadeh [2013] can be used to characterize the

cone of SOS matrices and the SOS-L2 cone. Section 5.4 is focused on improving

the parameter of the barriers for the SOS-L2 and SOS-L1 cones. In Section 5.5 we

outline implementation advantages of the new cones. In Section 5.6 we compare

various formulations using a numerical example and conclude in Section 5.7.

In this chapter, J𝑎..𝑏K are the integers in the interval [𝑎, 𝑏]. |𝐴| denotes the dimen-

sion of a set 𝐴. I𝑚 is the identity in R𝑚×𝑚. ⊗𝐾 : R𝑎1×𝑎2 ×R𝑏1×𝑏2 → R𝑎1𝑏1×𝑎2𝑏2 is the

usual Kronecker product. All vectors, matrices, and higher order tensors are written

in bold font. 𝑠𝑖 is the 𝑖th element of a vector s and recall that s𝑖∈J1..𝑁K is the product

(s1, . . . , s𝑁). If 𝐴 is a vector space then 𝐴𝑛 is the Cartesian product of 𝑛 spaces 𝐴.

R[x]𝑛,𝑑 is the ring of polynomials in the variables x = (𝑥1, . . . , 𝑥𝑛) with maximum

degree 𝑑. Following the notation of Papp and Yildiz [2019], we use 𝐿 =
(︀
𝑛+𝑑
𝑛

)︀
and

𝑈 =
(︀
𝑛+2𝑑
𝑛

)︀
to denote the dimensions of R[x]𝑛,𝑑 and R[x]𝑛,2𝑑 respectively, when 𝑛 and

𝑑 are given in the surrounding context.
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5.1.1 The SOS polynomials cone and generic interior point

algorithms

A polynomial 𝑝(x) ∈ R[x]𝑛,2𝑑 is SOS if it can be expressed in the form 𝑝(x) =∑︀
𝑖∈J1..𝑁K 𝑞𝑖(x)

2 for some 𝑁 ∈ N and 𝑞𝑖∈J1..𝑁K(x) ∈ R[x]𝑛,𝑑. We denote the set of SOS

polynomials in R[x]𝑛,2𝑑 by 𝐾SOS, which is a proper cone in R[x]𝑛,2𝑑 [Nesterov, 2000].

We also say that s ∈ 𝐾SOS for s ∈ R𝑈 if s represents a vector of coefficients

of an SOS polynomial under a given basis. We use such vectorized definitions inter-

changeably with functional definitions of polynomial cones. To construct a vectorized

definition for 𝐾SOS, suppose we have a fixed basis for R[x]𝑛,2𝑑, and let 𝑝𝑖∈J1..𝐿K(x) be

basis polynomials for R[x]𝑛,𝑑. Let 𝜆 : J1..𝐿K2 → R𝑈 be a function such that 𝜆(𝑖, 𝑗)

returns the vector of coefficients of the polynomial 𝑝𝑖(x)𝑝𝑗(x) using the fixed basis for

R[x]𝑛,2𝑑. Define the lifting operator Λ : R𝑈 → S𝐿, introduced by Nesterov [2000], as:

Λ(s)𝑖,𝑗 = ⟨𝜆(𝑖, 𝑗), s⟩R𝑈 ∀𝑖, 𝑗 ∈ J1..𝐿K, (5.1)

where Λ(s)𝑖𝑗 is a component in row 𝑖 and column 𝑗. Now the cones 𝐾SOS and 𝐾*
SOS

admit the characterization [Nesterov, 2000, Theorem 7.1]:

𝐾SOS = {s ∈ R𝑈 : ∃S ∈ S𝐿
+, s = Λ*(S)}, (5.2a)

𝐾*
SOS = {s ∈ R𝑈 : Λ(s) ∈ S𝐿

+}. (5.2b)

(5.2) shows that the dual cone 𝐾*
SOS is an inverse linear image of the positive semidef-

inite (PSD) cone, and therefore has an efficiently computable logarithmically homo-

geneous self-concordant barrier (LHSCB) (see [Nesterov and Nemirovskii, 1994, Defi-

nitions 2.3.1, 2.3.2]). In particular, by linearity of Λ, the function s ↦→ − logdet(Λ(s))

is an LHSCB for 𝐾*
SOS [Nesterov and Nemirovskii, 1994, Proposition 5.1.1] with pa-

rameter 𝐿 (an 𝐿-LHSCB for short). This makes it possible to solve optimization

problems over 𝐾SOS or 𝐾*
SOS with a generic primal-dual interior point algorithm in

polynomial time, for example, the algorithm from Chapter 2.1

1We direct the interested reader to Faybusovich [2002], who obtained non-linear barriers for the
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Recall the algorithm from Chapter 2 only requires a membership check, an initial

interior point, and evaluations of derivatives of an LHSCB for each cone or its dual.

Optimizing over 𝐾SOS (or 𝐾*
SOS) directly instead of building SDP formulations is

appealing because the dimension of 𝐾SOS is generally much smaller than the cone

dimension in SDP formulations that are amenable to more specialized algorithms

[Papp and Yildiz, 2019, Coey et al., 2021d]. In later sections we describe efficient

LHSCBs and membership checks for each cone we introduce.

The output of the lifting operator depends on the polynomial basis chosen for

R[x]𝑛,𝑑 as well as the basis for R[x]𝑛,2𝑑. Following Papp and Yildiz [2019], we use a

set of Lagrange polynomials that are interpolant on some points t𝑖∈J1..𝑈K as the basis

for R𝑛,2𝑑[x] and the multivariate Chebyshev polynomials [Hoffman and Withers, 1988]

as the basis in R𝑛,𝑑[x]. These choices give the particular lifting operator we implement,

ΛSOS(s):

ΛSOS(s)𝑖,𝑗 =
∑︀

𝑢∈J1..𝑈K 𝑝𝑖(t𝑢)𝑝𝑗(t𝑢)𝑠𝑢 ∀𝑖, 𝑗 ∈ J1..𝐿K. (5.3)

Equivalently, ΛSOS(s) = P⊤Diag(s)P, where 𝑃𝑢,ℓ = 𝑝ℓ(t𝑢) for all 𝑢 ∈ J1..𝑈K, ℓ ∈

J1..𝐿K. The adjoint Λ*
SOS : S𝐿 → R𝑈 is given by Λ*

SOS(S) = diag(PSP⊤). Papp and

Yildiz [2019] show that the Lagrange basis gives rise to expressions for the gradient

and Hessian of the barrier for 𝐾*
SOS that are computable in 𝒪(𝐿𝑈2) time for any

𝑑, 𝑛 ≥ 1. Although we assume for simplicity that 𝑝 is a dense basis for R[x]𝑛,𝑑, this is

without loss of generality. A modeler with access to a suitable sparse basis of 𝐿̄ < 𝐿

polynomials in R[x]𝑛,𝑑 and 𝑈̄ < 𝑈 interpolation points, could use (5.3) and obtain a

barrier with parameter 𝐿̄.

cone of univariate polynomials generated by Chebyshev systems by computing the universal volume
barrier of Nesterov and Nemirovskii [1994], which is unrelated to the SDP representations of these
polynomials.
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5.2 Polynomial generalizations for three conic sets

The first set we consider are the polynomial matrices Q(x) ∈ R[x]𝑚×𝑚
𝑛,2𝑑 (i.e. 𝑚 ×𝑚

matrices with components that are polynomials in 𝑛 variables of maximum degree

2𝑑)2 satisfying the constraint:

Q(x) ⪰ 0 ∀x. (5.4)

One of the first applications of matrix SOS constraints was by Henrion and Lasserre

[2006]. The moment-SOS hierarchy was extended from the scalar case to the ma-

trix case, using a suitable extension of Putinar’s Positivstellesatz studied by Hol and

Scherer [2004] and Kojima [2003]. This constraint has various applications in statis-

tics, control, and engineering [Aylward et al., 2007, 2008, Doherty et al., 2004, Hall,

2019]. A tractable restriction for (5.4) is given by the SOS formulation:

y⊤Q(x)y ∈ 𝐾SOS ∀y ∈ R𝑚. (5.5)

This formulation is sometimes implemented in practice (e.g. [Legat et al., 2017]) and

requires an SOS cone of dimension 𝑈 sd(𝑚) (by exploiting the fact that all terms are

bilinear in the y variables). It is well known that (5.5) is equivalent to restricting

Q(x) to be an SOS matrix of the form Q(x) = M(x)⊤M(x) for some 𝑁 ∈ N and

M(x) ∈ R[x]𝑁×𝑚
𝑛,𝑑 [Blekherman et al., 2012, Definition 3.76]. To be consistent in

terminology with the other cones we introduce, we refer to SOS matrices as SOS-

PSD matrices, or belonging to 𝐾SOSPSD. We show how to characterize 𝐾SOSPSD and

use it directly in an interior point algorithm in Section 5.3.

The second set we consider are the polynomial vectors q(x) ∈ R[x]𝑚𝑛,2𝑑 satisfying:

𝑞1(x) ≥
√︁∑︀

𝑖∈J2..𝑚K(𝑞𝑖(x))
2 ∀x, (5.6)

2We assume that polynomial components in vectors and matrices involve the same variables
and have the same maximum degree, to avoid detracting from the key ideas in this paper. This
assumption could be removed at the expense of more cumbersome notation.
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and hence requiring q(x) to be in the epigraph set of the ℓ2-norm function (second

order cone) pointwise (cf. (5.4) requiring the polynomial matrix to be in the PSD

cone). A tractable restriction for this constraint is given by the SOS formulation:

y⊤Arw(q(x))y ∈ 𝐾SOS ∀y ∈ R𝑚, (5.7)

where Arw : R[x]𝑚𝑛,2𝑑 → R[x]𝑚×𝑚
𝑛,2𝑑 is defined by:

Arw(p(x)) =

⎡⎣𝑝1(x) p̄(x)⊤

p̄(x) 𝑝1(x)I𝑚−1

⎤⎦ ,

p(x) = (𝑝1(x), p̄(x)) ∈ R[x]𝑛,2𝑑 × R[x]𝑚−1
𝑛,2𝑑 .

(5.8)

Due to the equivalence between (5.5) and membership in 𝐾SOSPSD, (5.7) is equivalent

to requiring that q(x) belongs to the cone we denote 𝒦Arw SOSPSD defined by:

𝒦Arw SOSPSD = {q(x) ∈ R[x]𝑚𝑛,2𝑑 : Arw(q(x)) ∈ 𝐾SOSPSD}. (5.9)

Membership in 𝒦Arw SOSPSD ensures (5.6) holds due to the SDP representation of the

second order cone [Alizadeh and Goldfarb, 2003], and the fact that the SOS-PSD

condition certifies pointwise positive semidefiniteness. An alternative restriction of

(5.6) is described by the set we denote 𝐾SOS ℓ2 , which is not representable by the usual

scalar polynomial SOS cone in general:

𝐾SOS ℓ2 =

⎧⎨⎩q(x) ∈ R[x]𝑚𝑛,2𝑑 : ∃𝑁 ∈ N,p𝑖∈J1..𝑁K(x) ∈ R[x]𝑚𝑛,𝑑,

q(x) =
∑︀

𝑖∈J1..𝑁K p𝑖(x) ∘ p𝑖(x)

⎫⎬⎭ , (5.10)

where ∘ : R𝑚 × R𝑚 → R𝑚 is defined by:

x ∘ y =

⎡⎣ x⊤y

𝑥1ȳ + 𝑦1x̄

⎤⎦ , x = (𝑥1, x̄), y = (𝑦1, ȳ) ∈ R× R𝑚−1, (5.11)

and ∘ : R[x]𝑚𝑛,𝑑 × R[x]𝑚𝑛,𝑑 → R[x]𝑚𝑛,2𝑑 on polynomial vectors is defined analogously.
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This set was also studied by Kojima and Muramatsu with a focus on extending

Positivstellensatz results [Kojima and Muramatsu, 2007]. The validity of 𝐾SOS ℓ2 as a

restriction of (5.6) follows from the the characterization of the second order cone as a

cone of squares [Alizadeh and Goldfarb, 2003, Section 4]. For this reason we will refer

to the elements of 𝐾SOS ℓ2 as the SOS-L2 polynomials. For a polynomial vector in

R[x]𝑚𝑛,2𝑑, the dimension of 𝐾SOS ℓ2 is 𝑈𝑚, which is favorable to the dimension 𝑈 sd(𝑚)

of 𝐾SOS required for (5.7) or 𝐾SOSPSD in (5.9). In addition, we show in Section 5.4.1

that 𝐾SOS ℓ2 admits an LHSCB with smaller parameter than 𝒦Arw SOSPSD. However,

we conjecture that for general 𝑛 and 𝑑, 𝐾SOS ℓ2 ⊊ 𝒦Arw SOSPSD (for example, consider

the vector [1 + 𝑥2, 1 − 𝑥2, 2𝑥], which belongs to 𝒦Arw SOSPSD but not 𝐾SOS ℓ2). Our

experiments in Section 5.6 also include instances where using 𝐾SOS ℓ2 and 𝒦Arw SOSPSD

gives different objective values. A third formulation can be obtained by modifying the

SDP formulation for 𝒦Arw SOSPSD to account for all sparsity in the y monomials (by

introducing a specialized cone for the Gram matrix of y⊤ Arw(q(x))y). However, this

approach suffers from requiring 𝒪(𝐿2) conic variables for each polynomial in q(x), so

we choose to focus on 𝐾SOS and 𝐾SOSPSD formulations for 𝒦Arw SOSPSD instead.

The third and final set we consider is also described through a constraint on a

polynomial vector q(x) ∈ R[x]𝑚𝑛,2𝑑. This constraint is given by:

𝑞1(x) ≥
∑︀

𝑖∈J2..𝑚K |𝑞𝑖(x)| ∀x, (5.12)

and hence requires the polynomial vector to be in the epigraph set of the ℓ1-norm

function (ℓ1-norm cone) pointwise. A tractable restriction for this constraint is given

by the SOS formulation:

𝑞1(x)−
∑︀

𝑖∈J2..𝑚K(𝑝𝑖(x)
+ + 𝑝𝑖(x)

−) ∈ 𝐾SOS, (5.13a)

𝑞𝑖(x) = 𝑝𝑖(x)
+ − 𝑝𝑖(x)

− ∀𝑖 ∈ J2..𝑚K, (5.13b)

𝑝𝑖(x)
+, 𝑝𝑖(x)

− ∈ 𝐾SOS ∀𝑖 ∈ J2..𝑚K, (5.13c)

which uses auxiliary polynomial variables 𝑝+𝑖∈J2..𝑚K(x) ∈ R[x]𝑛,2𝑑 and 𝑝−𝑖∈J2..𝑚K(x) ∈
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R[x]𝑛,2𝑑. We refer to the projection of (5.13) onto q(x) ∈ R[x]𝑚𝑛,2𝑑 as 𝐾SOS ℓ1 and to its

elements as the SOS-L1 polynomials. Note that the dimension of 𝐾SOS ℓ1 is 𝑈𝑚, while

(5.13) requires 2𝑚 − 1 SOS cones of dimension 𝑈 and 𝑈(𝑚 − 1) additional equality

constraints. In Section 5.4.2 we derive an 𝐿𝑚-LHSCB that allows us to optimize over

𝐾SOS ℓ1 directly, while (5.13) would require an LHSCB with parameter 𝐿(2𝑚− 1).

We summarize some key properties of the new cones and SOS formulations in

Table 5.1: the total dimension of cones involved, the parameter of an LHSCB for the

conic sets, the time complexity to calculate the Hessian of the LHSCB (discussed in

Section 5.5), the level of conservatism of each new conic set compared to its alternative

SOS formulation, and the number of auxiliary equality constraints and variables that

need to be added in an optimization problem.

SOS-PSD SOS-L2 SOS-L1

𝐾SOSPSD (5.5) 𝐾SOS ℓ2 (5.7) 𝐾SOS ℓ1 (5.13)

cone dim. 𝑈 sd(𝑚) 𝑈 sd(𝑚) 𝑈𝑚 𝑈 sd(𝑚) 𝑈𝑚 𝑈(2𝑚− 1)
parameter 𝐿𝑚 𝐿𝑚 2𝐿 𝐿𝑚 𝐿𝑚 𝐿(2𝑚− 1)
Hessian 𝐿𝑈2𝑚3 𝐿𝑈2𝑚5 𝐿𝑈2𝑚2 𝐿𝑈2𝑚5 𝐿𝑈2𝑚 𝐿𝑈2𝑚
conservatism equal - greater - equal -
equalities 0 0 0 0 0 𝑈(𝑚− 1)
variables 0 0 0 0 0 2𝑈(𝑚− 1)

Table 5.1: Properties of new cones compared to SOS formulations.

5.3 SOS-PSD and SOS-L2 cones from general alge-

bras

The ideas introduced by Papp and Alizadeh [2013] relating to SOS cones in general

algebras allow us to characterize 𝐾SOSPSD and 𝐾SOS ℓ2 without auxiliary SOS polyno-

mial constraints. As in Papp and Alizadeh [2013], let us define (𝐴,𝐵, ◇) as a general

algebra if 𝐴,𝐵 are vector spaces and ◇ : 𝐴×𝐴→ 𝐵 is a bilinear product that satisfies

the distributive property. For a general algebra (𝐴,𝐵, ◇), Papp and Alizadeh [2013]
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define the SOS cone 𝒦◇:

𝒦◇ = {𝑏 ∈ 𝐵 : ∃𝑁 ∈ N, 𝑎𝑖∈J1..𝑁K ∈ 𝐴, 𝑏 =
∑︀

𝑖∈J1..𝑁K 𝑎𝑖 ◇ 𝑎𝑖}. (5.14)

For instance, S+ is equal to the SOS cone of (R𝑚,S𝑚, ◇) for ◇ given by x◇y = 1
2
(xy⊤+

yx⊤). The second order cone is equal to the SOS cone of (R𝑚,R𝑚, ∘). 𝐾SOS is equal to

the SOS cone of (R[x]𝑛,𝑑,R[x]𝑛,2𝑑, ·) where · is the product of polynomials. To obtain

our vectorized representation of 𝐾SOS we can redefine the function 𝜆 : R𝐿×R𝐿 → R𝑈

so that for p𝑖,p𝑗 ∈ R𝐿 representing coefficients of any polynomials in R[x]𝑛,𝑑, 𝜆(p𝑖,p𝑗)

returns the vector of coefficients of the product of the polynomials. Then 𝐾SOS is

equal to the SOS cone of (R𝐿,R𝑈 , 𝜆).

As we describe in Section 5.3.1, Papp and Alizadeh [2013] also show how to build

lifting operators for general algebras. This allows us to construct membership checks

and easily computable LHSCBs for 𝐾*
SOSPSD and 𝐾*

SOS ℓ2
once we represent them as

SOS cones of tensor products of algebras.

The tensor product of two algebras (𝐴1, 𝐵1, ◇1) and (𝐴2, 𝐵2, ◇2) is a new algebra

(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2, ◇1 ⊗ ◇2), where ◇1 ⊗ ◇2 is defined via its action on elementary

tensors. For u1,v1 ∈ 𝐴1 and u2,v2 ∈ 𝐴2:

(u1 ⊗ u2) ◇1 ⊗ ◇2 (v1 ⊗ v2) = (u1 ◇1 v1)⊗ (u2 ◇2 v2). (5.15)

The algebra we are interested in for a functional representation of 𝐾SOSPSD is the

tensor product of (R[x]𝑛,𝑑,R[x]𝑛,2𝑑, ·) with (R𝑚,S𝑚, ◇̄). We can think of elements in

R[x]𝑛,𝑑 ⊗ R𝑚 as polynomial vectors in R[x]𝑚𝑛,𝑑, and R[x]𝑛,2𝑑 ⊗ S𝑚 as the symmetric

polynomial matrices in R[x]𝑚×𝑚
𝑛,2𝑑 . The SOS cone of (R[x]𝑛,𝑑⊗R𝑚,R[x]𝑛,2𝑑⊗S𝑚, ·⊗ ◇̄)

corresponds to the polynomial matrices that can be written as
∑︀

𝑖∈J1..𝑁K m𝑖(x)m𝑖(x)
⊤

with m𝑖(x) ∈ R[x]𝑚 for all 𝑖 ∈ J1..𝑁K [Papp and Alizadeh, 2013, Section 4.3], which

is exactly 𝐾SOSPSD. Equivalently, a vectorized representation of 𝐾SOSPSD can be

characterized as the SOS cone of (R𝐿⊗R𝑚,R𝑈⊗S𝑚, 𝜆⊗◇̄). We can think of R𝐿⊗R𝑚

as R𝐿×𝑚 and we can think of R𝑈 ⊗ S𝑚 as a subspace of R𝑈×𝑚×𝑚 that represents the

coefficients of symmetric polynomial matrices.
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Likewise, the algebra we are interested in for a functional representation of 𝐾SOS ℓ2

is the tensor product of (R[x]𝑛,𝑑,R[x]𝑛,2𝑑, ·) with (R𝑚,R𝑚, ∘). We can think of

R[x]𝑛,𝑑 ⊗ R𝑚 and R[x]𝑛,2𝑑 ⊗ R𝑚 as R[x]𝑚𝑛,𝑑 and R[x]𝑚𝑛,2𝑑 respectively. The SOS cone

of the tensor product of these algebras then corresponds to 𝐾SOS ℓ2 due to (5.10).

A vectorized representation of 𝐾SOS ℓ2 may be characterized as the SOS cone of

(R𝐿⊗R𝑚,R𝑈⊗R𝑚, 𝜆⊗∘). We can think of R𝑈⊗R𝑚 as the coefficients of polynomial

vectors, represented in R𝑈×𝑚.

5.3.1 Lifting operators for SOS-PSD and SOS-L2

The lifting operator of (𝐴,𝐵, ◇), when 𝐴 and 𝐵 are finite dimensional, is defined by

Papp and Alizadeh [2013] as the function Λ◇ : 𝐵 → S|𝐴| satisfying ⟨𝑎1,Λ◇(𝑏)𝑎2⟩𝐴 =

⟨𝑏, 𝑎1 ◇ 𝑎2⟩𝐵 for all 𝑎1, 𝑎2 ∈ 𝐴, 𝑏 ∈ 𝐵. This leads to the following descriptions of 𝒦◇

and 𝒦*
◇ [Papp and Alizadeh, 2013, Theorem 3.2]:

𝒦◇ = {s ∈ 𝐵 : ∃S ⪰ 0, s = Λ*
◇(S)}, (5.16a)

𝒦*
◇ = {s ∈ 𝐵 : Λ◇(s) ⪰ 0}. (5.16b)

Recall that in order to use either 𝒦◇ or 𝒦*
◇ in a generic interior point algorithm,

we require efficient oracles for a membership check and derivatives of an LHSCB of

𝒦◇ or 𝒦*
◇. If Λ◇(s) is efficiently computable, (5.16b) provides a membership check

for 𝒦*
◇. Furthermore, an LHSCB for 𝒦*

◇ is given by s ↦→ − logdet(Λ◇(s)) with barrier

parameter |𝐴| due to the linearity of Λ◇ [Nesterov and Nemirovskii, 1994, Proposition

5.1.1]. The following lemma describes how to compute Λ◇(s) for a tensor product

algebra.

Lemma 5.3.1. [Papp and Alizadeh, 2013, Lemma 4.1]: If w1 ∈ 𝐵1 and w2 ∈ 𝐵2,

then:

Λ◇1⊗◇2(w1 ⊗w2) = Λ◇1(w1)⊗𝐾 Λ◇2(w2). (5.17)
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Let us define ⊗ : R𝑈 × S𝑚 → R𝑈×𝑚×𝑚 such that (u ⊗ V)𝑖,𝑗,𝑘 = 𝑢𝑖𝑉𝑗,𝑘 and let

us represent the coefficients of a polynomial matrix by a tensor S ∈ R𝑈×𝑚×𝑚. Then

we may write S =
∑︀

𝑖∈J1..𝑚K,𝑗∈J1..𝑖K S𝑖,𝑗 ⊗ E𝑖,𝑗, where E𝑖,𝑗 ∈ R𝑚×𝑚 is a matrix of zeros

and ones with 𝐸𝑖,𝑗 = 𝐸𝑗,𝑖 = 1 and S𝑖,𝑗 ∈ R𝑈 are the coefficients of the polynomial

in row 𝑖 and column 𝑗. Applying Lemma 5.3.1, the lifting operator for 𝐾SOSPSD,

ΛSOSPSD : R𝑈×𝑚×𝑚 → S𝐿𝑚 is:

ΛSOSPSD(S) = Λ𝜆⊗◇̄(S) = Λ𝜆⊗◇̄(
∑︀

𝑖∈J1..𝑚K,𝑗∈J1..𝑖K S𝑖,𝑗 ⊗ E𝑖,𝑗) (5.18a)

=
∑︀

𝑖∈J1..𝑚K,𝑗∈J1..𝑖K ΛSOS(S𝑖,𝑗)⊗𝐾 E𝑖,𝑗. (5.18b)

The output is a block matrix, where each 𝐿 × 𝐿 submatrix in the 𝑖th group of

rows and 𝑗th group of columns is ΛSOSPSD(S)𝑖,𝑗 = ΛSOS(S𝑖,𝑗) for all 𝑖, 𝑗 ∈ J1..𝑚K.

The adjoint operator Λ*
SOSPSD : S𝐿𝑚 → R𝑈×𝑚×𝑚 may also be defined blockwise,

Λ*
SOSPSD(S)𝑖,𝑗 = Λ*

SOS(S𝑖,𝑗) for all 𝑖, 𝑗 ∈ J1..𝑚K where S𝑖,𝑗 ∈ R𝐿×𝐿 is the (𝑖, 𝑗)th

submatrix in S.

Likewise, we use a tensor s ∈ R𝑈×𝑚 to describe the coefficients of a polynomial

vector, and write s𝑖 ∈ R𝑈 to denote the vector of coefficients of the polynomial in

component 𝑖. Applying Lemma 5.3.1 again, we obtain the (blockwise) definition of

the lifting operator for 𝐾SOS ℓ2 , ΛSOS ℓ2 : R𝑈×𝑚 → S𝐿𝑚:

ΛSOS ℓ2(s)𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΛSOS(s1) 𝑖 = 𝑗

ΛSOS(s𝑗) 𝑖 = 1, 𝑗 ̸= 1

ΛSOS(s𝑖) 𝑖 ̸= 1, 𝑗 = 1

0 otherwise

∀𝑖, 𝑗 ∈ J1..𝑚K, (5.19)

where ΛSOS ℓ2(s)𝑖,𝑗 ∈ S𝐿 is the (𝑖, 𝑗)th submatrix of ΛSOS ℓ2(s). Thus ΛSOS ℓ2(s) has a

block arrowhead structure. The output of the adjoint operator Λ*
SOS ℓ2

: S𝐿𝑚 → R𝑈×𝑚
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may be defined as:

Λ*
SOS ℓ2

(S)𝑖 =

⎧⎪⎨⎪⎩
∑︀

𝑗∈J1..𝑚K Λ
*
SOS(S𝑗,𝑗) 𝑖 = 1

Λ*
SOS(S1,𝑖) + Λ*

SOS(S𝑖,1) 𝑖 ̸= 1

∀𝑖 ∈ J1..𝑚K, (5.20)

where Λ*
SOS ℓ2

(S)𝑖 ∈ R𝑈 is the 𝑖th slice of Λ*
SOS ℓ2

(S) and S𝑖,𝑗 ∈ R𝐿×𝐿 is the (𝑖, 𝑗)th

block in S for all 𝑖, 𝑗 ∈ J1..𝑚K.

5.4 Efficient barriers for SOS-L2 and SOS-L1

As for 𝐾*
SOSPSD and 𝐾*

SOS ℓ2
, we show that a barrier for 𝐾*

SOS ℓ1
can be obtained by

composing a linear lifting operator with the logdet barrier. This is sufficient to opti-

mize over 𝐾SOSPSD, 𝐾SOS ℓ2 and 𝐾SOS ℓ1 without high dimensional SDP formulations.

However, for 𝐾*
SOS ℓ2

and 𝐾*
SOS ℓ1

we can derive improved barriers by composing non-

linear functions with the logdet barrier instead. We show that these compositions are

indeed LHSCBs.

5.4.1 SOS-L2

Recall (5.16b) suggests that checking membership in 𝐾*
SOS ℓ2

amounts to checking pos-

itive definiteness of ΛSOS ℓ2(s) with side dimension 𝐿𝑚. This membership check corre-

sponds to a straightforward LHSCB with parameter 𝐿𝑚 given by s ↦→ − logdet(ΛSOS ℓ2(s)).

We now show that by working with a Schur complement of ΛSOS ℓ2(s), we obtain a

membership check for 𝐾*
SOS ℓ2

that requires factorizations of only two matrices with

side dimension 𝐿 and implies an LHSCB with parameter 2𝐿.

Let Π : R𝑈×𝑚 → S𝐿 return the Schur complement:

Π(s) = ΛSOS(s1)−
∑︀

𝑖∈J2..𝑚K ΛSOS(s𝑖)ΛSOS(s1)
−1ΛSOS(s𝑖). (5.21)
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By (5.16b) and (5.21):

𝐾*
SOS ℓ2

= {s ∈ R𝑈×𝑚 : ΛSOS ℓ2(s) ⪰ 0} (5.22a)

= cl{s ∈ R𝑈×𝑚 : ΛSOS ℓ2(s) ≻ 0} (5.22b)

= cl{s ∈ R𝑈×𝑚 : ΛSOS(s1) ≻ 0,Π(s) ≻ 0}. (5.22c)

(5.22c) describes a simple membership check. Furthermore, the function 𝐹 : R𝑈×𝑚 →

R defined by:

𝐹 (s) = − logdet(Π(s))− logdet(ΛSOS(s1)) (5.23a)

= − logdet(ΛSOS ℓ2(s)) + (𝑚− 2) logdet(ΛSOS(s1)), (5.23b)

is a 2𝐿-LHSCB barrier for 𝐾SOS ℓ2 .

Theorem 5.4.1. The function 𝐹 defined by (5.23) is a 2𝐿-LHSCB for 𝐾*
SOS ℓ2

.

Proof. It is easy to verify that 𝐹 is a logarithmically homogeneous barrier, so we

show it is a 2𝐿-self-concordant barrier for 𝐾*
SOS ℓ2

. We first show that 𝐹 : S𝐿
++ ×

(R𝐿×𝐿)𝑚−1 → R defined as 𝐹 (X1, . . . ,X𝑚) = − logdet(X1 −
∑︀

𝑖∈J2..𝑚K X𝑖X
−1
1 X⊤

𝑖 ) −

logdet(X1), is a 2𝐿-self-concordant barrier for the cone:

𝒦𝑚
ℓ2
= cl

{︀
(X1, . . . ,X𝑚) ∈ S𝐿

++ × (R𝐿×𝐿)𝑚−1 : X1 −
∑︀

𝑖∈J2..𝑚K X𝑖X
−1
1 X⊤

𝑖 ≻ 0
}︀
.

(5.24)

We then argue that 𝐹 is a composition of 𝐹 with the linear map (s1, . . . , s𝑚) ↦→

(ΛSOS(s1), . . . ,ΛSOS(s𝑚)) and 𝐾*
SOS ℓ2

is an inverse image of 𝒦𝑚
ℓ2

under the same map.

Then by Nesterov and Nemirovskii [1994, Proposition 5.1.1] 𝐹 is self-concordant.

Let Γ = S𝐿
+ × (R𝐿×𝐿)𝑚−1 and G : int(Γ)→ S𝐿 be defined as:

G(X1, . . . ,X𝑚) = X1 −
∑︀

𝑖∈J2..𝑚K X𝑖X
−1
1 X⊤

𝑖 . (5.25)

Let us check that G is (S𝐿
+, 1)-compatible with the domain Γ in the sense of [Nesterov

and Nemirovskii, 1994, Definition 5.1.1]. This requires that G is 𝐶3-smooth on int(Γ),
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G is concave with respect to S𝐿
+, and at each point X = (X1, . . . ,X𝑚) ∈ int(Γ) and

any direction V = (V1, . . . ,V𝑚) ∈ S𝐿 × (R𝐿×𝐿)𝑚−1 such that −X1 ⪯ V1 ⪯ X1, the

directional derivatives of G satisfy:

𝑑3G
𝑑X3 [V,V,V] ⪯ −3𝑑2G

𝑑X2 [V,V]. (5.26)

Let V ∈ S𝐿× (R𝐿×𝐿)𝑚−1. It can be checked that 𝑑3G
𝑑X3 is continuous on the domain

of G and we have the directional derivatives:

𝑑2G
𝑑X2 [V,V] = −2

∑︀
𝑖∈J2..𝑚K(X𝑖X

−1
1 V1 −V𝑖)X

−1
1 (X𝑖X

−1
1 V1 −V𝑖)

⊤, (5.27)

𝑑3G
𝑑X3 [V,V,V] = 6

∑︀
𝑖∈J2..𝑚K(X𝑖X

−1
1 V1 −V𝑖)X

−1
1 V1X

−1
1 (X𝑖X

−1
1 V1 −V𝑖)

⊤. (5.28)

Since X1 ≻ 0 in int(Γ), −𝑑2G
𝑑X2 [V,V] ⪰ 0 and so by Nesterov and Nemirovskii [1994,

Lemma 5.1.2], G is concave with respect to S𝐿
+. It remains to show that (5.26) is

satisfied. Since the directional derivatives decouple by each index 𝑖 in the sum, it is

sufficient to show that the inequality is satisfied for each 𝑖 ∈ J2..𝑚K. For this, it is

sufficient that:

6X−1
1 V1X

−1
1 ⪯ −3×−2X−1

1 , (5.29)

for all −X1 ⪯ V1 ⪯ X1, which follows since X1 is positive definite on int(Γ). Now

by [Nesterov and Nemirovskii, 1994, proposition 5.1.7], 𝐹 is a 2𝐿-LHSCB. The same

is true for 𝐹 by composing 𝐹 with a linear map.
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5.4.2 SOS-L1

By combining (5.2) and (5.13), the 𝐾SOS ℓ1 cone admits the semidefinite representa-

tion:

𝐾SOS ℓ1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s ∈ R𝑈×𝑚 : ∃S1,S2,+,S2,− . . . ,S𝑚,+,S𝑚,− ∈ S𝐿

+,

s1 = Λ*
SOS(S1) +

∑︀
𝑖∈J2..𝑚K Λ

*
SOS(S𝑖,+ + S𝑖,−),

s𝑖 = Λ*
SOS(S𝑖,+)− Λ*

SOS(S𝑖,−) ∀𝑖 ∈ J2..𝑚K

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (5.30)

Its dual cone is:

𝐾*
SOS ℓ1

=
{︀
s ∈ R𝑈×𝑚 : ΛSOS(s1 + s𝑖) ⪰ 0,ΛSOS(s1 − s𝑖) ⪰ 0 ∀𝑖 ∈ J2..𝑚K

}︀
. (5.31)

(5.31) suggests that checking membership in 𝐾*
SOS ℓ1

amounts to checking positive

definiteness of 2(𝑚 − 1) matrices of side dimension 𝐿. This membership check cor-

responds to a straightforward LHSCB with parameter 2𝐿(𝑚 − 1) that is given by

s ↦→ −
∑︀

𝑖∈J2..𝑚K logdet(ΛSOS(s1 + s𝑖)ΛSOS(s1 − s𝑖)). We now describe a membership

check for 𝐾*
SOS ℓ1

that requires factorizations of only 𝑚 matrices, and corresponds to

an LHSCB with parameter 𝐿𝑚.

Lemma 5.4.2. The set {X ∈ S𝐿
+,Y ∈ S𝐿 : −X ⪯ Y ⪯ X} is equal to 𝒦2

ℓ2
= cl{X ∈

S𝐿
++,Y ∈ S𝐿 : X−YX−1Y ≻ 0}.

Proof. For inclusion in one direction:

cl{X ∈ S𝐿
++,Y ∈ S𝐿 : X−YX−1Y ≻ 0} (5.32a)

=
{︀
X ∈ S𝐿

+,Y ∈ S𝐿 : (X Y
Y X ) ⪰ 0,

(︀
X −Y
−Y X

)︀
⪰ 0

}︀
(5.32b)

⊆
{︀
X ∈ S𝐿

+,Y ∈ S𝐿 : 2v⊤Xv ± 2v⊤Yv ≥ 0, ∀v ∈ R𝐿
}︀

(5.32c)

= {X ∈ S𝐿
+,Y ∈ S𝐿 : X+Y ⪰ 0,X−Y ⪰ 0}. (5.32d)

For the other direction, suppose −X ≺ Y ≺ X. Then X ≻ 0, Y + X ≻ 0,

X −Y ≻ 0. Note that (Y +X)X−1(X −Y) = X −YX−1Y is symmetric. Due to

Subramanian and Bhagwat [1979, Corollary 1], this product of three matrices also
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has nonnegative eigenvalues. We conclude that −X ≺ Y ≺ X implies X ≻ 0 and

X −YX−1Y ⪰ 0. Since −X ⪯ Y ⪯ X = cl{−X ≺ Y ≺ X}, taking closures gives

the result.

By Lemma 5.4.2 we can write the dual cone as:

𝐾*
SOS ℓ1

= cl

⎧⎨⎩ s ∈ R𝑈×𝑚 : ΛSOS(s1) ≻ 0,

ΛSOS(s1)− ΛSOS(s𝑖)ΛSOS(s1)
−1ΛSOS(s𝑖) ≻ 0,∀𝑖 ∈ J2..𝑚K

⎫⎬⎭ . (5.33)

Theorem 5.4.3. The function 𝐹 : R𝑈×𝑚 → R given by:

𝐹 (s) = −
∑︀

𝑖∈J2..𝑚K logdet(ΛSOS(s1)− ΛSOS(s𝑖)ΛSOS(s1)
−1ΛSOS(s𝑖))−

logdet(ΛSOS(s1))
(5.34)

is an 𝐿𝑚-LHSCB for 𝐾*
SOS ℓ1

.

Proof. It is easy to verify that 𝐹 is a logarithmically homogeneous barrier, and we

show it is an 𝐿𝑚-self-concordant barrier. As in Theorem 5.4.1, we define an auxiliary

cone:

𝒦𝑚
ℓ∞ = {(X1, . . . ,X𝑚) ∈ S𝐿

+ × (R𝐿×𝐿)𝑚−1 : (X1,X𝑖) ∈ 𝒦2
ℓ2
∀𝑖 ∈ J2..𝑚K}. (5.35)

Let 𝐹 : S𝐿
++×(R𝐿×𝐿)𝑚−1 → R be defined as 𝐹 (X1, . . . ,X𝑚) = −

∑︀
𝑖∈J2..𝑚K logdet(X1−

X𝑖X
−1
1 X⊤

𝑖 )− logdet(X1). We argue that 𝐹 is an 𝐿𝑚-self-concordant barrier for 𝒦𝑚
ℓ∞

.

𝐹 is a composition of 𝐹 with the same linear map used in Theorem 5.4.1 and self-

concordance of 𝐹 then follows by the same reasoning.

Let Γ = S𝐿
+ × (R𝐿×𝐿)𝑚−1 and H : int(Γ)→ (S𝐿

+)
𝑚−1 be defined by:

H(X1, . . . ,X𝑚) =
(︀
X1 −X2X

−1
1 X⊤

2 , . . . ,X1 −X𝑚X
−1
1 X⊤

𝑚

)︀
. (5.36)

We claim that H is ((S𝐿
+)

𝑚−1, 1)-compatible with the domain Γ. This amounts to

showing that for all 𝑖 ∈ J2..𝑚K, the mapping H𝑖 : S𝐿
++ × R𝐿×𝐿 → S𝐿, H𝑖(X) =

X1 −X𝑖X
−1
1 X⊤

𝑖 is (S𝐿
+, 1)-compatible with the domain S𝐿

+ ×R𝐿×𝐿 (the requirements
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for compatibility decouple for each 𝑖). The latter holds since H𝑖 is equivalent to the

function G from Theorem 5.4.1 with 𝑚 = 2. Then by Nesterov and Nemirovskii

[1994, Lemma 5.1.7], 𝐹 is an 𝐿𝑚-self-concordant barrier.

Note that we rely on an analogy of a representation for the ℓ∞-norm cone (see

[Coey et al., 2021d, Section 4.1]) in (5.33). From this we derive an LHSCB that is

analogous to the ℓ∞-norm cone LHSCB. On the other hand, we are not aware of an

efficient LHSCB for its dual, the ℓ1-norm cone, so we cannot use the same technique

to derive an LHSCB for the dual of a polynomial analogy to the ℓ∞-norm cone.

5.5 Implementation details

In Sections 5.5.1 to 5.5.3 we describe the gradients and Hessians of the LHSCBs

for 𝐾SOSPSD, 𝐾SOS ℓ2 , and 𝐾SOS ℓ1 , which are required as oracles in an algorithm like

Coey et al. [2021d]. We give computational complexities of the Hessian oracles for

each cone. All the oracles we describe are implemented in the open-source solver

Hypatia [Coey et al., 2021d].3

5.5.1 SOS-PSD

To draw comparisons between 𝐾SOSPSD and its SOS representation (5.5), let us outline

how we modify the representation of 𝐾SOS from Section 5.1.1 to account for sparsity

in a polynomial of the form y⊤Q(x)y.

Suppose we have interpolation points t𝑖∈J1..𝑈K to represent 𝐾SOS in R[x]𝑛,2𝑑. Let

t𝑖∈J1.. sd(𝑚)K represent distinct points in R𝑚, where at most two components in t𝑖 equal

one and the rest equal zero, for all 𝑖 ∈ J1.. sd(𝑚)K. We can check that the Cartesian

product of t𝑖∈J1..𝑈K and t𝑖∈J1.. sd(𝑚)K, given by {(t1, t1), . . . , (t𝑈 , tsd(𝑚))} gives 𝑈 sd(𝑚)

unisolvent points. The polynomial y⊤Q(x)y from (5.5) is then characterized by its

evaluation at these these points.

Now let 𝑝
𝑖∈J1..𝑚K

be polynomials in R[y]𝑚,1 such that 𝑝
𝑖
(𝑦1, . . . , 𝑦𝑚) = 𝑦𝑖 for all

3Available at https://github.com/chriscoey/Hypatia.jl.
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𝑖 ∈ J1..𝑚K. Recall that for 𝐾SOS in R[x]𝑛,2𝑑, P is defined by 𝑃𝑢,ℓ = 𝑝ℓ(t𝑢) for all 𝑢 ∈

J1..𝑈K, ℓ ∈ J1..𝐿K. The new matrix P for the 𝑈 sd(𝑚)-dimensional SOS cone is given

by P = Y ⊗𝐾 P, where Y ∈ Rsd(𝑚)×𝑚, is a Vandermonde matrix of the polynomials

𝑝
𝑖∈J1..𝑚K

and points t𝑖∈J1.. sd (𝑚)K. Finally, the lifting operator ΛSOS(s) = P⊤ diag(s)P

is of the same form as ΛSOS.

Lemma 5.5.1. Computing the Hessian of the LHSCB of 𝐾SOSPSD requires 𝒪(𝐿𝑈2𝑚3)

time while the Hessian of the LHSCB in the SOS formulation requires 𝒪(𝐿𝑈2𝑚5) time

if 𝑚 < 𝐿 < 𝑈 .

Proof. Define T𝑖,𝑗 : R𝑈×𝑚×𝑚 → R𝑈×𝑈 for all 𝑖, 𝑗 ∈ J1..𝑚K:

T𝑖,𝑗(S) = P(ΛSOSPSD(S)
−1)𝑖,𝑗P

⊤ =
(︀
(I𝑚 ⊗𝐾 P)ΛSOSPSD(S)

−1(I𝑚 ⊗𝐾 P)⊤
)︀
𝑖,𝑗
, (5.37)

where the indices 𝑖, 𝑗 reference a 𝑈 × 𝑈 submatrix. For all 𝑖, 𝑖′, 𝑗, 𝑗′ ∈ J1..𝑚K, 𝑢, 𝑢′ ∈

J1..𝑈K, the gradient and Hessian of the barrier are:4

𝑑𝐹

𝑑𝑆𝑖,𝑗,𝑢

= −T𝑖,𝑗(S)𝑢,𝑢, (5.38)

𝑑2𝐹

𝑑𝑆𝑖,𝑗,𝑢𝑑𝑆𝑖′,𝑗′,𝑢′
= T𝑖,𝑗′(S)𝑢,𝑢′T𝑗,𝑖′(S)𝑢,𝑢′ . (5.39)

The lifting operator ΛSOSPSD can be computed blockwise in 𝒪(𝐿2𝑈𝑚2) opera-

tions, while ΛSOS requires 𝒪(𝐿2𝑈𝑚4) operations. To avoid computing the explicit

inverse ΛSOSPSD(s)
−1, we use a Cholesky factorization ΛSOSPSD = LL⊤ to form a

block triangular matrix V = L−1(I𝑚 ⊗𝐾 P)⊤ in 𝒪(𝐿2𝑈𝑚2) operations, while com-

puting the larger V = L−1P⊤ where ΛSOS(s) = LL⊤ for the 𝐾SOS formulation requires

𝒪(𝐿2𝑈𝑚4) operations. We use the product V⊤V to build T𝑖,𝑗 for all 𝑖, 𝑗 ∈ J1..𝑚K in

𝒪(𝐿𝑈2𝑚3) operations, while calculating V⊤V requires 𝒪(𝐿𝑈2𝑚5) operations. Once

the blocks T𝑖,𝑗 are built, the time complexity to compute the gradient and Hessian

are the same for 𝐾SOSPSD as for 𝐾SOS.

4In practice we only store coefficients from the lower triangle of a polynomial matrix and account
for this in the derivatives.
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5.5.2 SOS-L2

Lemma 5.5.2. The Hessian of the LHSCB of 𝐾SOS ℓ2 requires 𝒪(𝐿𝑈2𝑚2) time while

the Hessian of the LHSCB in the SOS formulation requires 𝒪(𝐿𝑈2𝑚5) time if 𝑚 <

𝐿 < 𝑈 .

Proof. Let T𝑖,𝑗 : R𝑈×𝑚 → R𝑈×𝑈 be defined as in (5.37) for all 𝑖, 𝑗 ∈ J1..𝑚K, but

replacing ΛSOSPSD with ΛSOS ℓ2 . Let R = P(ΛSOS(s1))
−1P⊤. For all 𝑖, 𝑖′ ∈ J1..𝑚K,

𝑢, 𝑢′ ∈ J1..𝑈K, the gradient and Hessian of the barrier are:

𝑑𝐹

𝑑𝑠𝑖,𝑢
=

⎧⎪⎨⎪⎩−
∑︀

𝑗∈J1..𝑚K T𝑗,𝑗(s)𝑢,𝑢 + (𝑚− 2)R𝑢,𝑢 𝑖 = 1

−2T𝑖,1(s)𝑢,𝑢 𝑖 ̸= 1,

(5.40)

𝑑2𝐹

𝑑𝑠𝑖,𝑢𝑑𝑠𝑖′,𝑢′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀
𝑗∈J1..𝑚K,𝑘∈J1..𝑚K(T𝑗,𝑘(s)𝑢,𝑢′)2 − (𝑚− 2)(R𝑢,𝑢′)2 𝑖 = 𝑖′ = 1

2
∑︀

𝑗∈J1..𝑚K T𝑗,1(s)𝑢,𝑢′T𝑗,𝑖′(s)𝑢,𝑢′ 𝑖 = 1, 𝑖′ ̸= 1

2
∑︀

𝑗∈J1..𝑚K T1,𝑗(s)𝑢,𝑢′T𝑖,𝑗(s)𝑢,𝑢′ 𝑖 ̸= 1, 𝑖′ = 1

2(T1,1(s)𝑢,𝑢′T𝑖,𝑖′(s)𝑢,𝑢′ +T𝑖,1(s)𝑢,𝑢′T1,𝑖′(s)𝑢,𝑢′) 𝑖 ̸= 1, 𝑖′ ̸= 1.

(5.41)

To compute the blocks T𝑖,𝑗(s) we require an inverse of the matrix ΛSOS ℓ2(s). It can

be verified that:

ΛSOS ℓ2(s)
−1 =

⎡⎣0
I𝑚−1 ⊗𝐾 ΛSOS(s1)

−1

⎤⎦+UΠ(s)−1U⊤, (5.42)

where,

U⊤ =
[︁
−I𝐿 ΛSOS(s2)ΛSOS(s1)

−1 ΛSOS(s3)ΛSOS(s1)
−1 . . . ΛSOS(s𝑚)ΛSOS(s1)

−1

]︁
.

Computing T𝑖,𝑗 for all 𝑖, 𝑗 ∈ J1..𝑚K is the most expensive step in obtaining the Hessian

and we do this in 𝒪(𝐿𝑈2𝑚2) operations. The complexity of computing the Hessian in

the SOS formulation of 𝒦Arw SOSPSD is the same as in the SOS formulation of 𝐾SOSPSD

since the cones have the same dimension.
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5.5.3 SOS-L1

Lemma 5.5.3. The Hessians of the LHSCBs of 𝐾SOS ℓ1 and its SOS formulation

require 𝒪(𝐿𝑈2𝑚) time if 𝑚 < 𝐿 < 𝑈 .

Proof. Let T𝑖,𝑗(s) : R𝑈×𝑚 → S𝑈 for all 𝑖 ∈ J2..𝑚K, 𝑗 ∈ {1, 2} be defined by:

T𝑖,𝑗(s) = P(ΛSOS ℓ2((𝑠1, 𝑠𝑖))
−1)1,𝑗P

⊤ (5.43)

=
(︀
(I𝑚 ⊗𝐾 P)ΛSOS ℓ2((𝑠1, 𝑠𝑖))

−1(I𝑚 ⊗𝐾 P)⊤
)︀
1,𝑗
. (5.44)

For all 𝑖, 𝑖′ ∈ J1..𝑚K, 𝑢, 𝑢′ ∈ J1..𝑈K, the gradient and Hessian of the barrier are:

𝑑𝐹

𝑑𝑠𝑖,𝑢
=

⎧⎪⎨⎪⎩−2
∑︀

𝑗∈J2..𝑚K T𝑗,1(s)𝑢,𝑢 + (𝑚− 2)R𝑢,𝑢 𝑖 = 1

−2T𝑖,2(s)𝑢,𝑢 𝑖 ̸= 1,

(5.45)

𝑑2𝐹

𝑑𝑠𝑖,𝑢𝑑𝑠𝑖′,𝑢′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑︀

𝑗∈J2..𝑚K,𝑘∈{1,2}(T𝑗,𝑘(s)𝑢,𝑢′)2 − (𝑚− 2)(R𝑢,𝑢′)2 𝑖 = 𝑖′ = 1

4T𝑖,1(s)𝑢,𝑢′T𝑖,2(s)𝑢,𝑢′ 𝑖 ̸= 1, 𝑖′ = 1

4T𝑖′,1(s)𝑢,𝑢′T𝑖′,2(s)𝑢,𝑢′ 𝑖 = 1, 𝑖′ ̸= 1

2
∑︀

𝑘∈{1,2}(T𝑖,𝑘(s)𝑢,𝑢′)2 𝑖 = 𝑖′ ̸= 1

0 otherwise.

(5.46)

Calculating T𝑖,𝑗(s) for all 𝑖 ∈ J2..𝑚K, 𝑗 ∈ {1, 2} can be done in 𝒪(𝐿𝑈2𝑚) operations.

The Hessian of the SOS formulation requires computing 𝒪(𝑚) Hessians of SOS cones

that require 𝒪(𝐿𝑈2) time. We use the block arrowhead structure of the Hessian when

applying its inverse similarly to (5.42).

5.6 Numerical example

For each cone (𝐾SOSPSD, 𝐾SOS ℓ2 , 𝐾SOS ℓ1) we compare the computational time to solve

a simple example with its SOS formulation from Section 5.2. We use an example

analogous to the polynomial envelope problem from [Papp and Yildiz, 2019, Section

154



7.2], but replace the nonnegativity constraint by a conic inequality. Let 𝑞𝑖∈J2..𝑚K(x)

be randomly generated polynomials in R𝑛,2𝑑𝑟 [x]. We seek a polynomial that gives the

tightest approximation to the ℓ1 or ℓ2 norm of (𝑞2(x), . . . , 𝑞𝑚(x)) for all x ∈ [−1, 1]𝑛:

min
𝑞1(x)∈R𝑛,2𝑑[x]

∫︁
[−1,1]𝑛

𝑞1(x)𝑑x : (5.47a)

𝑞1(x) ≥ ||(𝑞2(x), . . . , 𝑞𝑚(x))||𝑝 ∀x ∈ [−1, 1]𝑛, (5.47b)

with 𝑝 ∈ {1, 2} in (5.47b).

To restrict (5.47b) over [−1, 1]𝑛, we use weighted sum of squares (WSOS) formu-

lations. A polynomial 𝑞(x) is WSOS with respect to weights 𝑔𝑖∈J1..𝐾K(x) if it can be

expressed in the form of 𝑞(x) =
∑︀

𝑖∈J1..𝐾K 𝑔𝑖(x)𝑝𝑖(x), where 𝑝𝑖∈J1..𝐾K(x) are SOS. Papp

and Yildiz [2019, Section 6] show that the dual WSOS cone (we will write 𝐾*
WSOS)

may be represented by an intersection of 𝐾*
SOS cones. We represent the dual weighted

cones 𝐾*
WSOSPSD, 𝐾*

WSOS ℓ2
and 𝒦*

WSOS ℓ1
analogously using intersections of 𝐾*

SOSPSD,

𝐾*
SOS ℓ2

and 𝒦*
SOS ℓ1

respectively.

Let f𝑖∈J1..𝑚K denote the coefficients of 𝑞𝑖∈J1..𝑚K(x) and let w ∈ R𝑈 be a vector of

quadrature weights on [−1, 1]𝑛. A low dimensional representation of (5.47) may be

written as:

min
f1∈R𝑈

w⊤f1 : (f1, . . . , f𝑚) ∈ 𝒦, (5.48)

where 𝒦 is 𝐾WSOS ℓ2 or 𝐾WSOS ℓ1 . If 𝑝 = 2, we compare the 𝐾WSOS ℓ2 formulation

with two alternative formulations involving 𝒦Arw SOSPSD. We use either 𝐾WSOSPSD to

model 𝒦Arw SOSPSD as implied in (5.9), or 𝐾WSOS as in (5.7). For 𝑝 = 1, we build an
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SOS formulation by replacing (5.48) with:

min
f1,g2,...,g𝑚,h2,...,h𝑚∈R𝑈

w⊤f1 : (5.49a)

f1 −
∑︀

𝑖 ∈ J2..𝑚K(g𝑖 + h𝑖) ∈ 𝐾WSOS, (5.49b)

f𝑖 − g𝑖 + h𝑖 = 0, g𝑖,h𝑖 ∈ 𝐾WSOS ∀𝑖 ∈ J2..𝑚K. (5.49c)

We select interpolation points using a heuristic adapted from [Papp and Yildiz,

2019, Sommariva and Vianello, 2009]. We uniformly sample 𝑁 interpolation points,

where 𝑁 ≫ 𝑈 . We form a Vandermonde matrix of the same structure as the matrix

P used to construct the lifting operator, but using the 𝑁 sampled points for rows. We

perform a QR factorization and use the first 𝑈 indices from the permutation vector

of the factorization to select 𝑈 out of 𝑁 rows to keep.

All experiments are performed on hardware with an AMD Ryzen 9 3950X 16-

Core Processor (32 threads) and 128GB of RAM, running Ubuntu 20.10, and Julia

1.8 [Bezanson et al., 2017]. Optimization models are built using JuMP [Lubin and

Dunning, 2015] and solved with Hypatia 0.5.3 using our specialized, predefined cones.

Scripts we use to run our experiments and raw results are available in the Hypatia

repository.5 We use default settings in Hypatia and set relative optimality and feasi-

bility tolerances to 10−7.

In Tables 5.2 and 5.3, we show Hypatia’s termination status, number of iterations,

and solve times for 𝑛 ∈ {1, 4} and varying values of 𝑑𝑟 and 𝑚. The termination status

(st) columns of Tables 5.2 and 5.3 use the following codes to classify solve runs:

co the solver claims the primal-dual certificate returned is optimal given its numerical

tolerances,

tl a limit of 1800 seconds is reached,

rl a limit of approximately 120GB of RAM is reached,
5Instructions to repeat our experiments are at https://github.com/chriscoey/Hypatia.jl/

tree/master/benchmarks/natvsext.
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sp the solver terminates due to slow progress during iterations,

er the solver reports a different numerical error,

sk we skip the instance because the solver reached a time or RAM limit on a smaller

instance.

If 𝑝 = 1, we let 𝑑 = 𝑑𝑟, where the maximum degree of 𝑞1(x) is 2𝑑. If 𝑝 = 2, we vary

𝑑 ∈ {𝑑𝑟, 2𝑑𝑟} and add an additional column obj in Table 5.2 to show the ratio of

the objective value under the 𝐾WSOS (or equivalently 𝐾WSOSPSD) formulation divided

by the objective value under the 𝐾WSOS ℓ2 formulation. Note that in our setup, the

dimension of 𝐾WSOS ℓ2 only depends on 𝑑. A more flexible implementation could allow

polynomial components to have different degrees in 𝐾WSOS ℓ2 for the 𝑑 = 2𝑑𝑟 case.

For 𝑝 = 2 and 𝑑 = 2𝑑𝑟, the difference in objective values between 𝐾WSOS ℓ2 and

alternative formulations is less than 1% across all converged instances. For 𝑝 = 2

and 𝑑 = 𝑑𝑟, the difference in the objective values is around 10–43% across converged

instances. However, the solve times for 𝐾WSOS ℓ2 with 𝑑 = 2𝑑𝑟 are sometimes faster

than the solve times of alternative formulations with 𝑑 = 𝑑𝑟 and equal values of

𝑛, 𝑚, and 𝑑𝑟. This suggests that it may be beneficial to use 𝐾WSOS ℓ2 in place of

SOS formulations, but with higher maximum degree in the 𝐾WSOS ℓ2 cone. The solve

times using 𝐾WSOSPSD are slightly faster than the solve times using 𝐾WSOS. For the

case where 𝑝 = 1, the 𝐾WSOS ℓ1 formulation is faster than the 𝐾WSOS formulation,

particularly for larger values of 𝑚. We also observe that the number of iterations the

algorithm takes for 𝐾WSOS ℓ2 compared to alternative formulations varies, but larger

for 𝐾WSOS ℓ1 compared to the alternative SOS formulation.

157



𝐾SOS ℓ2 𝐾SOS 𝐾SOSPSD

𝑛 𝑑𝑟 𝑚 𝑑 st iter time st iter time st iter time obj

1

20

4 20 co 13 0.1 co 17 0.4 co 13 0.2 0.89
40 co 16 0.2 co 19 1.8 co 15 1.1 0.99

8 20 co 13 0.1 co 17 2.9 co 14 2.1 0.85
40 co 19 0.7 co 21 18.0 co 16 10.0 1.00

16 20 co 14 0.4 co 19 48.0 co 14 27.0 0.80
40 co 21 2.4 co 20 264.0 co 17 188.0 1.00

32 20 co 15 1.6 co 22 1189.0 co 17 843.0 0.78
40 co 23 13.0 tl 3 2033.0 tl 7 2075.0 0.03

64 20 co 17 8.5 rl * * rl * * *
40 co 20 59.0 sk * * sk * * *

40

4 40 co 14 0.2 co 17 1.4 co 14 1.0 0.89
80 co 19 1.0 co 19 7.7 co 17 6.2 0.99

8 40 co 16 0.6 co 19 15.0 co 15 9.1 0.82
80 co 21 3.1 co 21 93.0 co 17 62.0 1.00

16 40 co 17 2.0 co 20 246.0 co 16 152.0 0.79
80 co 27 13.0 co 21 1737.0 co 18 1206.0 1.00

32 40 co 18 7.6 tl 3 2031.0 tl 8 1803.0 0.02
80 co 27 53.0 rl * * rl * * *

64 40 co 19 36.0 sk * * sk * * *
80 co 26 226.0 sk * * sk * * *

4

2

4 2 co 13 0.2 co 18 0.9 co 15 0.6 0.75
4 co 21 33.0 co 43 133.0 co 37 97.0 1.00

8 2 co 13 0.4 co 21 11.0 co 18 7.7 0.64
4 co 21 102.0 tl 49 1816.0 tl 60 1811.0 1.00

16 2 co 15 2.3 co 30 242.0 co 25 203.0 0.59
4 co 21 437.0 sk * * sk * * *

32 2 co 15 10.0 tl 6 1848.0 tl 10 1972.0 15.00
4 co 22 1707.0 sk * * sk * * *

64 2 co 15 46.0 sk * * sk * * *
4 tl 10 1935.0 sk * * sk * * *

4

4 4 co 17 11.0 co 30 114.0 co 27 93.0 0.69
8 tl 10 1840.0 rl * * tl * * *

8 4 co 18 42.0 co 34 1494.0 co 29 1111.0 0.58
16 4 co 18 174.0 rl * * tl * * *
32 4 co 16 580.0 sk * * sk * * *
64 4 tl 10 1853.0 sk * * sk * * *

Table 5.2: Solve time in seconds and number of iterations (iter) for instances with
𝑝 = 2.
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𝐾SOS ℓ1 𝐾SOS

𝑛 𝑑 𝑚 st iter time st iter time

1

40

8 co 17 0.5 co 15 0.5
16 co 21 1.3 co 15 1.9
32 co 25 3.2 co 15 11.0
64 co 29 7.6 co 17 87.0

128 co 32 17.0 co 18 610.0

80

8 co 21 2.6 co 18 2.6
16 co 24 5.6 co 17 13.0
32 co 27 13.0 co 18 89.0
64 co 31 31.0 co 18 600.0

128 co 38 83.0 tl * *

4

2

8 co 17 0.5 co 17 0.4
16 co 18 1.0 co 16 1.3
32 co 24 2.8 co 17 7.8
64 co 27 6.4 co 17 57.0

128 co 30 14.0 co 17 400.0

4

8 co 25 28.0 co 21 54.0
16 co 28 86.0 co 22 318.0
32 co 29 198.0 tl 9 1823.0
64 co 31 423.0 sk * *

128 co 42 1210.0 sk * *

Table 5.3: Solve time in seconds and number of iterations (iter) for instances with
𝑝 = 1.

159



5.7 Conclusions

SOS generalizations of PSD, ℓ2-norm and ℓ1-norm constraints can be modeled using

specialized cones that are simple to use in a generic interior point algorithm. The

characterizations of 𝐾SOSPSD and 𝐾SOS ℓ2 rely on ideas from Papp and Alizadeh [2013]

as well as the use of a Lagrange polynomial basis for efficient oracles in the multivariate

case. For the 𝐾SOSPSD barrier, the complexity of evaluating the Hessian is reduced by

a factor of𝒪(𝑚2) from the SOS formulation barrier. This does not result in significant

speed improvements since Hessian evaluations are not the bottleneck in an interior

point algorithm. In contrast, the dimension and barrier parameter of the 𝐾SOS ℓ2 and

𝐾SOS ℓ1 cones are lower compared to their SOS formulations, and the complexity of

evaluating the Hessian of the 𝐾SOS ℓ2 barrier is reduced by a factor of 𝒪(𝑚3) from

its SOS formulation. For both 𝐾SOS ℓ2 and 𝐾SOS ℓ1 , the total solve time was generally

lower compared to their SOS formulations. While there is no penalty in using lower

dimensional representations of SOS-L1 constraints, SOS-L2 formulations give rise to

more conservative restrictions than higher dimensional SOS formulations, which is

observable in practice.
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Chapter 6

Efficient conjugate gradient

evaluations

This chapter is based on the submitted paper Kapelevich et al. [2022]. We use slightly

different cone symbols from Section 2.5 to clarify the distinctions in Hypatia’s power-

like cones.

6.1 Introduction

As described in Chapter 1, many of the properties of symmetric PDIPMs are not

straightforward to generalize for other conic sets. These properties include access to

Nesterov-Todd scaling points, and efficiently computable oracles for both the primal

barrier and its conjugate. In contrast to the algorithm by Skajaa and Ye [2015],

the algorithm for nonsymmetric cones by Dahl and Andersen [2021] attempts to

generalize some important algorithmic concepts from symmetric cone PDIPMs, to

nonsymmetric cones.

Unlike earlier chapters, here we are primarily motivated by the algorithm of Dahl

and Andersen [2021], which is implemented in the MOSEK solver. The method is

based on a technique by Tunçel [2001], Myklebust and Tunçel [2014] which generalizes

the concept of scaling matrices from symmetric cones. Like the algorithm by Skajaa

and Ye [2015], the linear systems solved in each iteration are equal in size to those
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arising in symmetric algorithms. Unlike the algorithm by Skajaa and Ye [2015],

information about the gradient of the conjugate barrier is required to compute search

directions. In turn, the search directions satisfy a number of desirable properties such

as ensuring that the violations of residuals and complementarity conditions decrease

at the same rate. The authors also propose a neighborhood that allows stepping

further away from the central path compared to Skajaa and Ye [2015], although there

is no proof of polynomial time convergence. One might expect, owing to the use

of conjugate barrier information, that the search directions of Dahl and Andersen

[2021] would often permit convergence in fewer iterations than the search directions

of Skajaa and Ye [2015]. We show some evidence of this in Section 7.1.

The search directions in the algorithm by Dahl and Andersen [2021] relate to those

from symmetric algorithms as follows. Given a primal-dual pair of points (𝑠, 𝑧) for a

symmetric cone, Nesterov and Todd [1997, 1998] show the existence of a unique scaling

matrix 𝑇 satisfying the secant equations 𝑧 = 𝑇𝑠 and 𝑔(𝑠) = 𝑇𝑔*(𝑧), where 𝑔 and 𝑔*

denote the gradients of the primal barrier and its conjugate. A key idea of Myklebust

and Tunçel [2014], Dahl and Andersen [2021] is to construct a general positive definite

matrix for any cone, satisfying the two secant equations. Dahl and Andersen [2021]

choose a specific formula for this scaling matrix that requires calculating the Hessian

of a primal barrier function, and adding low rank updates to the Hessian. These low

rank updates include adding multiples of the conjugate gradient.

The conjugate gradient can always be evaluated via a numerical procedure (e.g.

applying Newton’s method to an optimization problem), but this generic approach is

computationally slow and can be numerically challenging. In particular, it requires

applying the inverse Hessian of the primal barrier in each iteration (which can become

a new bottleneck in a PDIPM). A large number of damped Newton iterations may

be necessary to get near the region of quadratic convergence towards the end of

the PDIPM, when the distance to the cone boundary is small. Our aim is to show

efficient methods of calculating conjugate gradients for seven useful nonsymmetric

cones, which an interior point solver could support. Aside from their use in the

algorithm by Dahl and Andersen [2021], procedures for evaluating conjugate gradients
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are useful due to their applications in the frameworks by Nesterov et al. [1999] and

Nesterov [2012]. The cones we study are 𝒦log, 𝒦logdet, 𝒦pow, 𝒦rtdet, 𝒦gpow, 𝒦ℓ∞ , and

𝒦ℓspec from Section 2.5. Currently, MOSEK supports three-dimensional variants of

the logarithm cone and the radial power cone.

Our conjugate gradient evaluations lead to a second result- by differentiating the

procedure to calculate the conjugate gradients we are able to derive closed-form ex-

pressions for the inverse Hessian of the primal barrier. This is useful for measuring

central path proximity and the linear system methods from Section 2.6. The in-

verse Hessian is already known for five of the cones above (including the cones from

Chapter 3), so we only show it for the hypograph and radial power cones.

6.2 Preliminaries

Let 𝑓 be a LHSCB for a proper cone 𝒦. As a consequence of logarithmic homogeneity

(1.3b), the gradient 𝑔 of 𝑓 satisfies [Nesterov and Todd, 1997, Equation (2.5)]:

⟨−𝑔(𝑤), 𝑤⟩ = 𝜈 ∀𝑤 ∈ 𝒦. (6.1)

Recall the definition of a convex conjugate from (1.4), and recall that 𝑓 * is an

LHSCB for 𝒦* if 𝑓 is an LHSCB for 𝒦. The gradient 𝑔* of 𝑓 * is given by the unique

solutions to the optimization problem in (1.4):

𝑔*(𝑟) := − argmax𝑤∈int(𝒦){−⟨𝑟, 𝑤⟩ − 𝑓(𝑤)}. (6.2)

From (1.4), (6.2) and (6.1):

𝑓 *(𝑟) = −⟨𝑟,−𝑔*(𝑟)⟩ − 𝑓(−𝑔*(𝑟)) = −𝜈 − 𝑓(−𝑔*(𝑟)). (6.3)

We refer to 𝑔* as the conjugate gradient (which has no relation to the method of

conjugate gradients). The negative gradients of LHSCBs 𝑓 and 𝑓 * are bijective linear
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maps between 𝒦 and 𝒦*. In particular [Myklebust and Tunçel, 2014, Theorem 2.5]:

−𝑔*(−𝑔(𝑤)) = 𝑤 ∀𝑤 ∈ 𝒦, (6.4a)

−𝑔(−𝑔*(𝑟)) = 𝑟 ∀𝑟 ∈ 𝒦*. (6.4b)

(6.4) characterizes the gradient and conjugate gradient maps as negative inverses of

each other. Let 𝐻 and 𝐻* be the Hessians of 𝑓 and 𝑓 *.

Some of the LHSCBs we use are related to unitarily invariant functions. These

are a generalization of spectral functions of matrices from Chapter 3. Let 𝑊 =

𝑈𝑤 diag(𝜎𝑤)𝑉
⊤
𝑤 with 𝜎𝑤 ∈ R𝑑1 be the singular value decomposition of 𝑊 ∈ R𝑑1×𝑑2 .

If 𝑊 is symmetric, then 𝜎𝑤 are the eigenvalues of 𝑊 and 𝑈𝑤 = 𝑉𝑤. Suppose 𝐹 :

R𝑑1×𝑑2 → R is a function given by 𝐹 (𝑊 ) = 𝑓(𝜎𝑤), where 𝑓 ∈ R𝑑1 → R is some

symmetric function (invariant to the order of its inputs). Then 𝐹 is unitarily invariant.

Let 𝐺 and 𝑔 denote the gradients of 𝐹 and 𝑓 . In Sections 6.3.1, 6.3.2 and 6.3.4, we

use the result by Lewis [1995, Theorem 3.1]:

𝐺(𝑊 ) = 𝑈𝑤 Diag(𝑔(𝜎𝑤))𝑉
⊤
𝑤 . (6.5)

6.3 Conjugate gradients

In Sections 6.3.1 to 6.3.4 we offer efficient procedures for evaluating conjugate gra-

dients, characterized by (6.4). We defer some derivations to Section 6.5 to ease

readability.

6.3.1 Logarithm cone and log-determinant cone

Let 𝜙 : R𝑑 → R be the function:

𝜙(𝑤) :=
∑︀

𝑖∈J𝑑K log𝑤𝑖. (6.6)
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Recall the definition of the logarithm cone from Section 2.5:

𝒦log := cl
{︀
(𝑢, 𝑣, 𝑤) ∈ R× R> × R𝑑

> : 𝑢 ≤ 𝑣𝜙
(︀
𝑤
𝑣

)︀}︀
, (6.7)

and its (2 + 𝑑)-LHSCB proved in Section 3.6.4:

𝑓(𝑢, 𝑣, 𝑤) = − log(𝑣𝜙
(︀
𝑤
𝑣

)︀
− 𝑢)− log(𝑣)−

∑︀
𝑖∈J𝑑K log(𝑤𝑖). (6.8)

The dual cone is given by:

𝒦*
log := cl

{︀
(𝑝, 𝑞, 𝑟) ∈ R< × R× R𝑑

> : 𝑞 ≥ 𝑝
∑︀

𝑖∈J𝑑K log
(︀
− 𝑟𝑖

𝑝

)︀
+ 𝑝𝑑

}︀
. (6.9)

Let 𝜔 denote the Wright omega function [Corless and Jeffrey, 2002], which can be

well approximated in 𝑂(1) time and satisfies:

𝜔(𝛽) + log(𝜔(𝛽)) = 𝛽. (6.10)

The Wright omega function is used by Serrano [2015, Chapter 8] for deriving the

conjugate barrier of the three-dimensional exponential cone, which is a special case

of 𝒦log.

Proposition 6.3.1. The conjugate gradient at (𝑝, 𝑞, 𝑟) ∈ int(𝒦*
log) has components:

𝑔*𝑝 =
−𝑑−2+𝑞/𝑝+2𝜔̄

𝑝(1−𝜔̄)
, (6.11a)

𝑔*𝑞 = − 1
𝑝(1−𝜔̄)

, (6.11b)

𝑔*𝑟𝑖 =
𝜔̄

𝑟𝑖(1−𝜔̄)
∀𝑖 ∈ J𝑑K, (6.11c)

where:

𝜔̄ := 𝑑 · 𝜔
(︀
1
𝑑

(︀
1 + 𝑑− 𝑞

𝑝
+
∑︀

𝑖∈J𝑑K log
(︀
− 𝑟𝑖

𝑝

)︀)︀
− log(𝑑)

)︀
. (6.12)

The proof is given in Section 6.5.1. Note that by substituting (6.11) in (6.3), we
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obtain the conjugate barrier:

𝑓 *(𝑝, 𝑞, 𝑟) = −2− 𝑑− 2 log(−𝑝)− log
(︀ (𝜔̄−1)𝑑+1

𝜔̄𝑑

)︀
−
∑︀

𝑖∈J𝑑K log(𝑟𝑖). (6.13)

The conjugate gradient for 𝒦log can be easily modified to obtain a conjugate gradi-

ent for the log-determinant cone from Section 2.5 (for simplicity, without vectorizing):

𝒦logdet := cl
{︀
(𝑢, 𝑣,𝑊 ) ∈ R× R> × S𝑑

≻ : 𝑢 ≤ 𝑣 logdet
(︀
𝑊
𝑣

)︀}︀
, (6.14)

which has the dual:

𝒦*
logdet := cl

{︀
(𝑝, 𝑞, 𝑅) ∈ R< × R× S𝑑

≻ : 𝑞 ≥ 𝑝(logdet
(︀
−𝑅

𝑝

)︀
+ 𝑑)

}︀
. (6.15)

Let 𝑊 = 𝑈𝑤 Diag(𝜆𝑤)𝑈
⊤
𝑤 be the eigendecomposition of 𝑊 . 𝒦logdet admits the (2+𝑑)-

LHSCB [Coey et al., 2021a, Section 6]:

𝐹 (𝑢, 𝑣,𝑊 ) = − log(𝑣𝜙
(︀
𝜆𝑤

𝑣

)︀
− 𝑢)− log(𝑣)−

∑︀
𝑖∈J𝑑K log(𝜆𝑤,𝑖) = 𝑓(𝑢, 𝑣, 𝜆𝑤). (6.16)

Proposition 6.3.2. Let (𝑝, 𝑞, 𝑅) ∈ int(𝒦*
logdet) and let 𝑅 = 𝑈𝑟 Diag(𝜆𝑟)𝑈

⊤
𝑟 be the

eigendecomposition of 𝑅. The conjugate gradient 𝐺* has components:

𝐺*
𝑝 = 𝑔*𝑝(𝑝, 𝑞, 𝜆𝑟) =

−𝑑−2+𝑞/𝑝+2Ω̄

𝑝(1−Ω̄)
, (6.17a)

𝐺*
𝑞 = 𝑔*𝑞(𝑝, 𝑞, 𝜆𝑟) = −𝑝−1(1− Ω̄)−1, (6.17b)

𝐺*
𝑅 = 𝑈𝑟 Diag(𝑔

*
𝑟(𝑝, 𝑞, 𝜆𝑟))𝑈

⊤
𝑟 = Ω̄

(1−Ω̄)
𝑅−1, (6.17c)

where:

Ω̄ := 𝑑 · 𝜔
(︀
1
𝑑

(︀
1 + 𝑑− 𝑞

𝑝
+
∑︀

𝑖∈J𝑑K log
(︀
−𝜆𝑟,𝑖

𝑝

)︀)︀
− log(𝑑)

)︀
. (6.18)

Proof. For fixed 𝑢 and 𝑣, 𝐹 is a unitarily invariant function of 𝑊 . Due to (6.5), the
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gradient of 𝐹 is:

𝐺𝑢 = 𝑔𝑢(𝑢, 𝑣, 𝜆𝑤), (6.19a)

𝐺𝑣 = 𝑔𝑣(𝑢, 𝑣, 𝜆𝑤), (6.19b)

𝐺𝑊 = 𝑈𝑤 Diag(𝑔𝑤(𝑢, 𝑣, 𝜆𝑤))𝑈
⊤
𝑤 . (6.19c)

The result can be verified from (6.4) and (6.19).

6.3.2 Hypograph power cone and root-determinant cone

Let 𝜙 : R𝑑 → R be the function:1

𝜙(𝑤) :=
∏︀

𝑖∈J𝑑K 𝑤
𝛼𝑖
𝑖 , (6.20)

parametrized by 𝛼 = (𝛼1, . . . , 𝛼𝑑) such that ⟨𝑒, 𝛼⟩ = 1 and 𝛼 ≥ 0. Define the

hypograph-power cone:

𝒦hpower :=
{︀
(𝑢,𝑤) ∈ R× R𝑑

≥ : 𝑢 ≤ 𝜙(𝑤)
}︀
, (6.21)

which admits the (1 + 𝑑)-LHSCB [Nesterov et al., 2018, Section 5.4.7]:

𝑓(𝑢,𝑤) = − log(𝜙(𝑤)− 𝑢)−
∑︀

𝑖∈J𝑑K log(𝑤𝑖). (6.22)

This is the power mean cone in Section 2.5. In the special case where 𝛼 = 𝑒/𝑑, we call

𝒦hpower the hypograph geometric mean cone, 𝒦hgeom. The dual cone is given by [Coey

et al., 2021b]:

𝒦*
hpower :=

{︀
(𝑝, 𝑟) ∈ R≤ × R𝑑

≥ : −𝑝 ≤ 𝜙
(︀
𝑟
𝛼

)︀}︀
. (6.23)

The division in 𝑟/𝛼 should be interpreted componentwise.

Lemma 6.3.3. Let (𝑝, 𝑟) ∈ int(𝒦*
hpower) parametrized by 𝛼. The unique root of ℎ(𝑦) :=

1We reuse symbols with similar roles across subsections; their meaning should be taken from the
definition within each subsection.
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∑︀
𝑖∈J𝑑K 𝛼𝑖 log(𝑦−𝑝𝛼𝑖)− log(𝜙(𝑟)) can be easily computed by a quadratically convergent

Newton-Raphson method starting at 0.

The proof is given in Section 6.5.2.

Proposition 6.3.4. The conjugate gradient at (𝑝, 𝑟) ∈ int(𝒦*
hpower) has components:

𝑔*𝑝 = −𝑝−1 − 𝑦−1, (6.24a)

𝑔*𝑟𝑖 =
𝑝𝛼𝑖𝑦

−1−1
𝑟𝑖

∀𝑖 ∈ J𝑑K, (6.24b)

where 𝑦 is the root of ℎ from Lemma 6.3.3. In the case where 𝛼 = 𝑒/𝑑, the conjugate

gradient at (𝑝, 𝑟) ∈ int(𝒦*
hgeom) can be written more simply:

𝑔*𝑝 = −𝑝−1 − (𝜙(𝑟) + 𝑝/𝑑)−1, (6.25a)

𝑔*𝑟𝑖 = −
𝜙(𝑟)

𝑟𝑖(𝜙(𝑟)+𝑝/𝑑)
∀𝑖 ∈ J𝑑K. (6.25b)

The proof is given in Section 6.5.2. Substituting (6.25) in (6.3), we obtain a simple

expression for the conjugate barrier of 𝒦hgeom:

𝑓 *(𝑝, 𝑟) = −1− 𝑑− 𝑑 log
(︀𝑑𝜙(𝑟)+𝑝

𝑑𝜙(𝑟)

)︀
− log(−𝑝)−

∑︀
𝑖∈J𝑑K log

(︀
𝑟𝑖
)︀
. (6.26)

The conjugate gradient for 𝒦hgeom can be easily modified to obtain a conjugate

gradient for the root-determinant cone from Section 2.5:

𝒦rtdet :=
{︀
(𝑢,𝑊 ) ∈ R× S𝑑

⪰ : 𝑢 ≤ det(𝑊 )1/𝑑
}︀
, (6.27)

which has the dual [Coey et al., 2021d, Section 4.4]:

𝒦*
rtdet :=

{︀
(𝑝,𝑅) ∈ R≤ × S𝑑

⪰ : −𝑝 ≤ 𝑑 det(𝑅)1/𝑑
}︀
. (6.28)

Let 𝑊 = 𝑈𝑤 Diag(𝜆𝑤)𝑈
⊤
𝑤 be the eigendecomposition of 𝑊 . 𝒦rtdet admits the (1+ 𝑑)-
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LHSCB [Coey et al., 2021a]:

𝐹 (𝑢,𝑊 ) = − log(𝜙(𝜆𝑤)− 𝑢)−
∑︀

𝑖∈J𝑑K log(𝜆𝑤,𝑖) = 𝑓(𝑢, 𝜆𝑤). (6.29)

Proposition 6.3.5. Let (𝑝,𝑅) ∈ int(𝒦*
rtdet) and 𝑅 = 𝑈𝑟 Diag(𝜆𝑟)𝑈

⊤
𝑟 be the eigende-

composition of 𝑅. The conjugate gradient 𝐺* has components:

𝐺*
𝑝 = 𝑔*𝑝(𝑝, 𝜆𝑟) = −𝑝−1 − (det(𝑅)1/𝑑 + 𝑝/𝑑)−1, (6.30a)

𝐺*
𝑅 = 𝑈𝑟 Diag(𝑔

*
𝑟(𝑝, 𝜆𝑟))𝑈

⊤
𝑟 = − det(𝑅)1/𝑑

det(𝑅)1/𝑑+𝑝/𝑑
𝑅−1. (6.30b)

Proof. For fixed 𝑢, 𝐹 is a unitarily invariant function of 𝑊 . Similar to Proposi-

tion 6.3.2, the result can be verified from (6.4) and (6.5).

6.3.3 Radial power cone

Let 𝜙 : R𝑑 → R be the function:

𝜙(𝑤) :=
∏︀

𝑖∈J𝑑2K 𝑤
2𝛼𝑖
𝑖 , (6.31)

parametrized by 𝛼 = (𝛼1, . . . , 𝛼𝑑) such that ⟨𝑒, 𝛼⟩ = 1 and 𝛼 ≥ 0. Define the radial-

power cone:

𝒦rpower :=
{︀
(𝑢,𝑤) ∈ R𝑑1 × R𝑑2

≥ : ‖𝑢‖ ≤
∏︀

𝑖∈J𝑑2K 𝑤
𝛼𝑖
𝑖 =

√︀
𝜙(𝑤)

}︀
, (6.32)

which admits the (1 + 𝑑2)-LHSCB [Roy and Xiao, 2021, Theorem 1]:

𝑓(𝑢,𝑤) = − log(𝜙(𝑤)− ‖𝑢‖2)−
∑︀

𝑖∈J𝑑2K(1− 𝛼𝑖) log(𝑤𝑖). (6.33)

This is the generalized power cone in Section 2.5. Note that 𝑓 is not equivalent

to the barrier from (6.22), even when 𝑑1 = 1. Hence the conjugate barrier and its

derivatives take different forms from our results in Section 6.3.2. In the special case

where 𝛼 = 𝑒/𝑑2 and 𝑑1 = 1, we call 𝒦rpower the radial geometric mean cone 𝒦rgeom.
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The dual cone is given by [Chares, 2009, Theorem 4.3.1]:

𝒦*
rpower :=

{︀
(𝑝, 𝑟) ∈ R𝑑1 × R𝑑2

≥ : ‖𝑝‖ ≤
∏︀

𝑖∈J𝑑2K

(︀
𝑟𝑖
𝛼𝑖

)︀𝛼𝑖
}︀
. (6.34)

Lemma 6.3.6. Let (𝑝, 𝑟) ∈ int(𝒦*
hpower) parametrized by 𝛼 and 𝑝 > 0. The unique

positive root of:

ℎ(𝑦) :=
∑︀

𝑖∈J𝑑2K 2𝛼𝑖 log
(︀
2𝛼𝑖𝑦

2+ 2𝑦(1+𝛼𝑖)
𝑝

)︀
− log(𝜙(𝑟))− log

(︀
2𝑦
𝑝
+𝑦2

)︀
−2 log

(︀
2𝑦
𝑝

)︀
(6.35)

can be easily computed numerically by a quadratically convergent Newton-Raphson

method starting at 𝑝−1 + 𝑑2
𝑝+
√

𝜙(𝑟)(𝑑22/𝑝
2𝜙(𝑟)+𝑑22−1)

𝜙(𝑟)𝑑22−𝑝2
.

The proof is given in Section 6.5.3.

Proposition 6.3.7. The conjugate gradient at (𝑝, 𝑟) ∈ int(𝒦*
rpower) is given by:

𝑔*𝑝𝑖 =

⎧⎪⎨⎪⎩0 𝑝 = 0,

𝑦 𝑝𝑖
‖𝑝‖ 𝑝 ̸= 0,

∀𝑖 ∈ J𝑑1K, (6.36a)

𝑔*𝑟𝑖 = −
𝛼𝑖(1+𝑝𝑦)+1

𝑟𝑖
∀𝑖 ∈ J𝑑2K, (6.36b)

where 𝑦 is the positive root of ℎ from Lemma 6.3.6. In the case where 𝑑1 = 1 and

𝛼 = 𝑒/𝑑2, the conjugate gradient at (𝑝, 𝑟) ∈ int(𝒦*
rgeom) is:

𝑔*𝑝 = −𝑝−1 + 𝑑2
𝑝+
√

𝜙(𝑟)(𝑑22/𝑝
2𝜙(𝑟)+𝑑22−1)

𝜙(𝑟)𝑑22−𝑝2
, (6.37a)

𝑔*𝑟𝑖 = −𝑟
−1
𝑖

(︁
𝑝2+
√

𝜙(𝑟)(𝑑22𝜙(𝑟)+𝑑22𝑝
2−𝑝2)

𝜙(𝑟)𝑑22−𝑝2
+ 1

)︁
∀𝑖 ∈ J𝑑2K. (6.37b)

The proof is given in Section 6.5.3.
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6.3.4 Infinity norm cone and spectral norm cone

Recall the definition of the infinity norm cone from Section 2.5:

𝒦ℓ∞ :=
{︀
(𝑢,𝑤) ∈ R× R𝑑 : 𝑢 ≥ ‖𝑤‖∞

}︀
, (6.38)

which admits the (1 + 𝑑)-LHSCB [Güler, 1996, section 7.5]:

𝑓(𝑢,𝑤) = −
∑︀

𝑖∈J𝑑K log(𝑢
2 − 𝑤2

𝑖 ) + (𝑑− 1) log(𝑢). (6.39)

The dual cone is the epigraph of the ℓ1 norm function:

𝒦*
ℓ∞

:=
{︀
(𝑝, 𝑟) ∈ R× R𝑑 : 𝑝 ≥ ‖𝑟‖1

}︀
. (6.40)

Lemma 6.3.8. Let (𝑝, 𝑟) ∈ int(𝒦*
ℓ∞
). The unique negative root of ℎ(𝑦) := 𝑝𝑦 +∑︀

𝑖∈J𝑑K

√︀
1 + 𝑟2𝑖 𝑦

2 + 1 can be easily computed by a quadratically convergent Newton-

Raphson method starting at max{−(𝑝−
∑︀

𝑖∈J𝑑K|𝑟𝑖|)−1,−𝑑+1
𝑝
}.

Proposition 6.3.9. The conjugate gradient at (𝑝, 𝑟) ∈ int(𝒦*
ℓ∞
) is given by:

𝑔*𝑝 = 𝑦, (6.41a)

𝑔*𝑟𝑖 =

⎧⎪⎨⎪⎩0 𝑟𝑖 = 0,
√

1+𝑦2𝑟2𝑖−1

𝑟𝑖
𝑟𝑖 ̸= 0,

∀𝑖 ∈ J𝑑K, (6.41b)

where 𝑦 is the negative root of ℎ from Lemma 6.3.8.

The proof is given in Section 6.5.4. The conjugate gradient for 𝒦ℓ∞ can be easily

modified to obtain a conjugate gradient for the spectral norm cone from Section 2.5

(for simplicity, without vectorizing):

𝒦ℓspec := {(𝑢,𝑊 ) ∈ R× R𝑑1×𝑑2 : 𝑢 ≥ 𝜎max(𝑊 )}, (6.42)

where 𝜎max is the maximum singular value function. Let 𝑅 = 𝑈𝑟 Diag(𝜎𝑟)𝑉
⊤
𝑟 be the

singular value decomposition of 𝑅 ∈ R𝑑1×𝑑2 . The dual cone is the epigraph of the
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nuclear norm:

𝒦*
ℓspec

:= {(𝑝,𝑅) ∈ R× R𝑑1×𝑑2 : 𝑝 ≥
∑︀

𝑖∈J𝑑1K 𝜎𝑟,𝑖}. (6.43)

Let 𝑊 = 𝑈𝑤 Diag(𝜎𝑤)𝑉
⊤
𝑤 be the singular value decomposition of 𝑊 . 𝒦ℓspec admits

the (1 + 𝑑1)-LHSCB:

𝐹 (𝑢,𝑊 ) = −
∑︀

𝑖∈J𝑑1K log(𝑢
2 − 𝜎2

𝑤,𝑖) + (𝑑1 − 1) log(𝑢) = 𝑓(𝑢, 𝜎𝑤). (6.44)

Proposition 6.3.10. The conjugate gradient 𝐺* at (𝑝,𝑅) ∈ int(𝒦*
ℓspec

) has compo-

nents:

𝐺*
𝑝 = 𝑔*𝑝(𝑝, 𝜎𝑟), (6.45a)

𝐺*
𝑅 = 𝑈𝑟 Diag(𝑔

*
𝑟(𝑝, 𝜎𝑟))𝑉

⊤
𝑟 . (6.45b)

Proof. For fixed 𝑢, 𝐹 is a unitarily invariant function of 𝑊 . Similar to Proposi-

tion 6.3.2, the result can be verified using (6.4) and (6.5).

6.4 Inverse Hessians

In Chapter 3 we derive efficient inverse Hessian operators for a number of cones,

including 𝒦log, 𝒦logdet, 𝒦hgeom, and 𝒦rtdet. Inverse Hessians for 𝒦ℓ∞ and 𝒦ℓspec are

described in a forthcoming paper by Coey.2 As described in Chapter 2, the inverse

Hessians are useful for measuring proximity to the central path in Hypatia’s algorithm,

as well as some of the linear system solving methods. Our derivations of the conjugate

gradients offer an alternative method for deriving inverse Hessian operators. Since

these have not been written for 𝒦hpower or 𝒦rpower, we derive those inverse Hessian

operators here.

2Implementation by C. Coey can be found at https://github.com/chriscoey/Hypatia.jl/
blob/master/src/Cones/epinormspectral.jl.
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6.4.1 Hypograph power cone

Proposition 6.4.1. The inverse Hessian operator at 𝑢̃ = (𝑢,𝑤) ∈ 𝒦hpower parametrized

by 𝛼, in the direction 𝑥̃ = (𝑥, 𝑧) ∈ R1+𝑑 is:

(𝐻(𝑢̃)−1 · 𝑥̃)𝑢 =
(︀
(𝜙(𝑤)− 𝑢)2 + 𝑘2

𝑘3
𝑢2
)︀
𝑥− 𝜙(𝑤)

𝑘3
⟨𝑧, 𝛼𝑤

𝑘0
⟩, (6.46a)

(𝐻(𝑢̃)−1 · 𝑥̃)𝑤𝑖
=

𝑤2
𝑖

𝑘1,𝑖
𝑧𝑖 +

𝛼𝑖𝑤𝑖

𝑘1,𝑖

𝜙(𝑤)
𝑘3

𝑥+ 𝑔𝑢𝜙(𝑤)
𝑘3
⟨𝑧, 𝛼𝑤

𝑘0
⟩𝛼𝑖𝑤𝑖

𝑘1,𝑖
∀𝑖 ∈ J𝑑K, (6.46b)

where 𝜙 is defined as in Section 6.3.2, and:

𝑘1,𝑖 := 1 + 𝛼𝑖𝜙(𝑤)𝑔𝑢 ∀𝑖 ∈ J𝑑K, (6.47a)

𝑘2 :=
∑︀

𝑖∈J𝑑K
𝛼2
𝑖

𝑘1,𝑖
, (6.47b)

𝑘3 := 1− 𝜙(𝑤)𝑔𝑢𝑘2. (6.47c)

The proof is given in Section 6.6.1.

6.4.2 Radial power cone

Proposition 6.4.2. The inverse Hessian operator at 𝑢̃ = (𝑢,𝑤) ∈ 𝒦rpower parametrized

by 𝛼, in the direction 𝑥̃ = (𝑥, 𝑧) is:

(𝐻(𝑢̃)−1 · 𝑥̃)𝑢𝑖
= 𝜁

2
𝑥𝑖 +

𝑢𝑖

𝑘3

(︀
− 2𝑘2𝜙(𝑤)−𝜁𝑘3

𝑘1
⟨𝑥, 𝑢⟩ − ⟨𝛼/𝑔𝑤, 𝑧⟩

)︀
∀𝑖 ∈ J𝑑1K, (6.48a)

(𝐻(𝑢̃)−1 · 𝑥̃)𝑤𝑖
= − 𝑤𝑖

𝑔𝑤𝑖
𝑧𝑖 − 𝛼𝑖

𝑘3𝑔𝑤𝑖

(︀
⟨𝑥, 𝑢⟩ − 2‖𝑢‖2

𝜁
⟨𝛼/𝑔𝑤, 𝑧⟩

)︀
∀𝑖 ∈ J𝑑2K, (6.48b)

where 𝜙 is defined as in Section 6.3.3, 𝜁 := 𝜙(𝑤)− ‖𝑢‖2, and:

𝑘1 := 𝜙(𝑤) + ‖𝑢‖2, (6.49a)

𝑘2 := ⟨𝛼/𝑤, 𝛼/𝑔𝑤⟩, (6.49b)

𝑘3 :=
𝜙(𝑤)+‖𝑢‖2

2𝜙(𝑤)
+ 2𝑘2

‖𝑢‖2
𝜁

. (6.49c)

The proof is given in Section 6.6.2.
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6.5 Proofs of conjugate gradients

6.5.1 Logarithm cone

Proof of Proposition 6.3.1. For convenience, let 𝜁 be the function 𝜁(𝑢, 𝑣, 𝑤) := 𝑣𝜙(𝑤/𝑣)−

𝑢. Let (𝑢, 𝑣, 𝑤) ∈ int(𝒦log). Then the gradient of 𝑓 with respect to components, 𝑢,

𝑣, and 𝑤 is:

𝑔𝑢 = 𝜁(𝑢, 𝑣, 𝑤)−1, (6.50a)

𝑔𝑣 = −𝜁(𝑢, 𝑣, 𝑤)−1(𝜙
(︀
𝑤
𝑣
)− 𝑑

)︀
− 1

𝑣
, (6.50b)

𝑔𝑤𝑖
= −𝜁(𝑢, 𝑣, 𝑤)−1 𝑣

𝑤𝑖
− 1

𝑤𝑖
∀𝑖 ∈ J𝑑K. (6.50c)

Note that 𝜔̄ > 1 since:

(𝑝, 𝑞, 𝑟) ∈ int(𝒦*
log) (6.51a)

⇒ 𝑝𝑑− 𝑞 + 𝑝
∑︀

𝑖∈J𝑑K log
(︀
− 𝑟𝑖

𝑝

)︀
< 0 (6.51b)

⇔ 1
𝑑

(︀
1 + 𝑑− 𝑞

𝑝
+
∑︀

𝑖∈J𝑑K log
(︀
− 𝑟𝑖

𝑝

)︀)︀
− log(𝑑) > 1

𝑑
+ log

(︀
1
𝑑

)︀
(6.51c)

⇔ 𝜔
(︀
1
𝑑

(︀
1 + 𝑑− 𝑞

𝑝
+
∑︀

𝑖∈J𝑑K log
(︀
− 𝑟𝑖

𝑝

)︀)︀
− log(𝑑)

)︀
> 1

𝑑
(6.51d)

⇔ 𝜔̄ > 1, (6.51e)

where (6.51d) follows from (6.51c) by applying 𝜔 to both sides, and noting that

𝜔(𝛽 + log(𝛽)) = 𝛽 due to (6.10).

We would like to find 𝑔* := (𝑔*𝑝, 𝑔
*
𝑞, 𝑔

*
𝑟) such that −𝑔(−𝑔*) = (𝑝, 𝑞, 𝑟). Fix

𝜁 := 𝜁(−𝑔*𝑝,−𝑔*𝑞,−𝑔*𝑟). Then, from (6.50a):

𝑝 = −𝜁−1. (6.52)
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Combining (6.50c) with (6.52), we need for all 𝑖 ∈ J𝑑K:

𝑟𝑖 = 𝜁−1 𝑔*𝑞
𝑔*𝑟𝑖
− 1

𝑔*𝑟𝑖
(6.53a)

= −𝑝 𝑔*𝑞
𝑔*𝑟𝑖
− 1

𝑔*𝑟𝑖
(6.53b)

⇒ 𝑔*𝑟𝑖 =
−𝑝𝑔*𝑞−1

𝑟𝑖
. (6.53c)

Combining (6.50b) with (6.52), we need (division by 𝑟 should be interpreted compo-

nentwise):

𝑞 = 𝜁−1
(︀
𝜙
(︀𝑔*𝑟
𝑔*𝑞

)︀
− 𝑑

)︀
− 1

𝑔*𝑞
(6.54a)

= −𝑝
(︀
𝜙
(︀−𝑝𝑔*𝑞−1

𝑟𝑔*𝑞

)︀
− 𝑑

)︀
− 1

𝑔*𝑞
. (6.54b)

Replacing the definition of 𝜙 in (6.54) and rearranging:

𝑞
𝑝
− 𝑑−

∑︀
𝑖∈J𝑑K log(−

𝑟𝑖
𝑝
)− 1 = − 1

𝑝𝑔*𝑞
− 𝑑 log(1 + 1

𝑝𝑔*𝑞
)− 1 (6.55a)

⇒ − 𝑞
𝑝
+ 𝑑+

∑︀
𝑖∈J𝑑K log(−

𝑟𝑖
𝑝
) + 1 = 1 + 1

𝑝𝑔*𝑞
+ 𝑑 log(1 + 1

𝑝𝑔*𝑞
). (6.55b)

Note (6.55b) has the form 𝛽 = 𝑎+ 𝑑 log(𝑎). Letting 𝑎 = 𝑑𝑏:

𝛽 = 𝑑𝑏+ 𝑑 log(𝑑𝑏)⇒ 𝛽
𝑑
− log(𝑑) = 𝑏+ log(𝑏). (6.56)

Therefore,

𝑑−1
(︀
1 + 𝑑− 𝑞

𝑝
+
∑︀

𝑖∈J𝑑K log(−
𝑟𝑖
𝑝
)
)︀
− log(𝑑) = 1 + 1

𝑝𝑔*𝑞
+ log

(︀
1 + 1

𝑝𝑔*𝑞

)︀
(6.57a)

⇒ 𝜔̄ = 1 + 1
𝑝𝑔*𝑞

(6.57b)

⇒ 𝑔*𝑞 = −𝑝−1(1− 𝜔̄)−1. (6.57c)

Substituting (6.57c) in (6.53) gives (6.11c). Finally, due to (6.1):

𝑔*𝑝 =
−𝑑−2−𝑞𝑔*𝑞−⟨𝑟,𝑔*𝑟⟩

𝑝
= −𝑑−2+𝑞/𝑝+2𝜔̄

𝑝(1−𝜔̄)
. (6.58)
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6.5.2 Hypograph power cone

Proof of Lemma 6.3.3. For 𝜙 given in (6.20), let 𝑦 denote the root of:

ℎ(𝑦) :=
∑︀

𝑖∈J𝑑K 𝛼𝑖 log(𝑦 − 𝑝𝛼𝑖)− log(𝜙(𝑟)), (6.59)

which we show is unique. Note that 𝑦 must satisfy:

𝜙(𝑦𝑒− 𝑝𝛼𝑖) = 𝜙(𝑟) (6.60a)

⇒ 𝜙
(︀
𝑦
𝛼
− 𝑝𝑒

)︀
= 𝜙

(︀
𝑟
𝛼

)︀
. (6.60b)

Since (𝑝, 𝑟) ∈ 𝒦*
hpower, this implies 𝑦 > 0. The derivatives of ℎ are:

ℎ′(𝑦) =
∑︀

𝑖∈J𝑑K
𝛼𝑖

𝑦−𝑝𝛼𝑖
, (6.61a)

ℎ′′(𝑦) =
∑︀

𝑖∈J𝑑K−
𝛼𝑖

(𝑦−𝑝𝛼𝑖)2
< 0. (6.61b)

Note that 𝑝 < 0 for (𝑝, 𝑟) ∈ int(𝒦*
hpower) and therefore ℎ′(𝑦) > 0 for all 𝑦 >

max𝑖∈J𝑑K{𝑝𝛼𝑖}, i.e. the domain of ℎ. So the root of ℎ is unique. Since ℎ is concave and

increasing, a root-finding Newton-Raphson method will converge quadratically from

any initial 𝑦− < 𝑦 [Süli and Mayers, 2003, Theorem 1.9]. We may pick, for example,

𝑦− = 0, which ensures 𝑦− < 𝑦 and 𝑦− is in the domain of ℎ.

We remark that the solution from the uniform 𝛼 case can be used as an upper

bound on 𝑦. To see the validity of the upper bound, consider the function ℎ̄(𝛼, 𝑦) :=∑︀
𝑖∈J𝑑K 𝛼𝑖 log(𝑦 − 𝑝𝛼𝑖) − log(𝜙(𝑟)). Observe that ℎ̄(𝛼, 𝑦) is convex and symmetric in

𝛼 (over the unit simplex). Hence of any fixed 𝑦, ℎ̄(𝛼, 𝑦) is minimized at 𝛼 = 𝑒/𝑑.Since

ℎ̄(𝛼, 𝑦) is also increasing in 𝑦, the root of ℎ̄(𝑒/𝑑, 𝑦) = 0 upper bounds 𝑦.

Proof of Proposition 6.3.4. For convenience, let 𝜁 be the function 𝜁(𝑢,𝑤) := 𝜙(𝑤)−𝑢,

where 𝜙 is from (6.20). Let (𝑢,𝑤) ∈ int(𝒦hpower). Then the gradient of 𝑓 with respect
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to components 𝑢 and 𝑤 is:

𝑔𝑢 = 𝜁(𝑢,𝑤)−1, (6.62a)

𝑔𝑤𝑖
= −𝜁(𝑢,𝑤)−1𝜙(𝑤)𝛼𝑖𝑤

−1
𝑖 − 𝑤−1

𝑖 ∀𝑖 ∈ J𝑑K. (6.62b)

We would like to find 𝑔* := 𝑔*(𝑝, 𝑟) such that −𝑔(−𝑔*) = (𝑝, 𝑟). Using (6.62a), we

need:

𝑝 = −𝜁(−𝑔*𝑝,−𝑔*𝑟)−1 = −(𝜙(−𝑔*𝑟) + 𝑔*𝑝)
−1. (6.63)

Using (6.62b) and (6.63), we need for all 𝑖 ∈ J𝑑K:

𝑟𝑖 = 𝜁(−𝑔*𝑝,−𝑔*𝑟)−1 · 𝜙(−𝑔*𝑟)𝛼𝑖 · (−𝑔*𝑟𝑖
−1)− 𝑔*𝑟𝑖

−1 (6.64a)

= −𝑔*𝑟𝑖
−1(−𝑝𝛼𝑖𝜙(−𝑔*𝑟) + 1). (6.64b)

From (6.63) and (6.64):

𝑔*𝑝 = −𝑝−1 − 𝜙(−𝑔*𝑟), (6.65a)

𝑔*𝑟𝑖 =
𝑝𝛼𝑖𝜙(−𝑔*𝑟)−1

𝑟𝑖
∀𝑖 ∈ J𝑑K. (6.65b)

It remains to show how to evaluate 𝜙(−𝑔*𝑟). Applying 𝜙 from (6.20) to both sides

of (6.64b), after collecting for each 𝑖:

𝜙(𝑟) =
∏︀

𝑖∈J𝑑K

(︀
−𝑔*𝑟𝑖

−1
(︀
−𝑝𝛼𝑖𝜙(−𝑔*𝑟) + 1

)︀)︀𝛼𝑖 (6.66a)

=
∏︀

𝑖∈J𝑑K 𝜙(−𝑔*𝑟)−𝛼𝑖
(︀
−𝑝𝛼𝑖𝜙(−𝑔*𝑟) + 1

)︀𝛼𝑖 (6.66b)

=
∏︀

𝑖∈J𝑑K

(︀
− 𝑝𝛼𝑖 + 𝜙(−𝑔*𝑟)−1

)︀𝛼𝑖 (6.66c)

⇒ log(𝜙(𝑟)) =
∑︀

𝑖∈J𝑑K 𝛼𝑖 log
(︀
−𝑝𝛼𝑖 + 𝜙(−𝑔*𝑟)−1

)︀
(6.66d)

⇒ ℎ(𝜙(−𝑔*𝑟)−1) = 0. (6.66e)

From (6.66e), we can evaluate 𝜙(−𝑔*𝑟)−1 easily due to Lemma 6.3.3. Combining this

with (6.65) justifies (6.24). In the special case where 𝛼 = 𝑒/𝑑, we can solve ℎ(𝑦) = 0
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exactly, giving:

𝑦 =
(︀
𝜙(𝑟) + 𝑝

𝑑

)︀−1
. (6.67)

Substituting (6.67) in (6.65) gives (6.25).

6.5.3 Radial power cone

Proof of Lemma 6.3.6. Let 𝑦 denote the positive root of:

ℎ(𝑦) :=
∑︀

𝑖∈J𝑑2K 2𝛼𝑖 log
(︀
2𝛼𝑖𝑦

2+ 2𝑦(1+𝛼𝑖)
𝑝

)︀
− log(𝜙(𝑟))− log

(︀
2𝑦
𝑝
+𝑦2

)︀
−2 log

(︀
2𝑦
𝑝

)︀
, (6.68)

which we show is unique. In the special case where 𝛼 = 𝑒/𝑑2, we can solve ℎ(𝑦) = 0

exactly. It can be verified that 𝑦 > 0 is given by:

𝑦 = −𝑝−1 + 𝑑2
𝑝+
√

𝜙(𝑟)(𝑑22/𝑝
2𝜙(𝑟)+𝑑22−1)

𝜙(𝑟)𝑑22−𝑝2
, (6.69)

where 𝜙 is given by (6.31). Note that the denominator is positive since (𝑝, 𝑟) ∈

int(𝒦*
rgeom). Let us turn to the case of non-uniform 𝛼. The first two derivatives of ℎ

are:

ℎ′(𝑦) = 2
∑︀

𝑖∈J𝑑2K
𝛼2
𝑖

𝛼𝑖𝑦+
1+𝛼𝑖

𝑝

− 2
𝑦+

1
𝑝

𝑦(𝑦+
2
𝑝
)
, (6.70a)

ℎ′′(𝑦) = −2
∑︀

𝑖∈J𝑑2K
𝛼3
𝑖(︀

𝛼𝑖𝑦+
1+𝛼𝑖

𝑝

)︀2 +
2
(︀
𝑦2+

2
𝑝2

)︀
𝑦2
(︀
𝑦+

2
𝑝

)︀2 . (6.70b)

We have that ℎ is decreasing for 𝑝, 𝑦 > 0, since:

ℎ′(𝑦) < 2
∑︀

𝑖∈J𝑑2K
𝛼2
𝑖

𝑎𝑖𝑦+
1+𝛼𝑖

𝑝

− 2 𝑦

𝑦
(︀
𝑦+

2
𝑝

)︀ (6.71a)

≤ 2 1

𝑦+
1+1
𝑝

− 2 1

𝑦+
2
𝑝

(6.71b)

= 0. (6.71c)

In the second to last line we use the fact that the right-hand side in the line above

is convex in 𝛼, and therefore maximized at an extreme point of the simplex that 𝛼
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belongs to. Similar reasoning shows that ℎ′′(𝑦) > 0 for 𝑝, 𝑦 > 0:

ℎ′′(𝑦) > −2
∑︀

𝑖∈J𝑑2K
𝛼3
𝑖(︀

𝛼𝑖𝑦+
1+𝛼𝑖

𝑝

)︀2 +
2(︀

𝑦+
2
𝑝

)︀2 (6.72a)

≥ − 2(︀
𝑦+

2
𝑝

)︀2 +
2(︀

𝑦+
2
𝑝

)︀2 (6.72b)

= 0. (6.72c)

The second inequality follows from the fact that the expression above it is concave

in 𝛼.

Due to (6.71) and (6.72), a root-finding Newton-Raphson method converges quadrat-

ically starting from some 𝑦− such that 𝑦− ≤ 𝑦 [Süli and Mayers, 2003, Theorem 1.9].

We may use the solution from the equal powers case, i.e. (6.69) for 𝑦−. To see

why, note that the function ℎ̄(𝛼, 𝑦) =
∑︀

𝑖∈J𝑑2K 2𝛼𝑖 log(2𝛼𝑖𝑦
2+(1+𝛼𝑖)

2𝑦
𝑝
)− log(𝜙(𝑟))−

log(2𝑦
𝑝
+𝑦2)−2 log(2𝑦

𝑝
) is convex and symmetric in 𝛼 (ignoring 𝑦, it can be checked that

the Hessian of ℎ̄ is diagonal with nonnegative entries). So for any fixed 𝑦, ℎ̄(𝛼, 𝑦) is

minimized at 𝛼 = 𝑒/𝑑2. Since ℎ is decreasing, a solution to ℎ̄(𝑒/𝑑2, 𝑦) = 0 lower bounds

𝑦.

Proof of Proposition 6.3.7. For convenience, let 𝜁 be the function 𝜁(𝑢,𝑤) := 𝜙(𝑤)−

‖𝑢‖2, where 𝜙 is from (6.31). Let (𝑢,𝑤) ∈ int(𝒦rpower). Then the gradient of 𝑓 with

respect to components 𝑢 and 𝑤 is:

𝑔𝑢𝑖
= 2𝑢𝑖

𝜁(𝑢,𝑤)
∀𝑖 ∈ J𝑑1K, (6.73a)

𝑔𝑤𝑖
= − 2𝛼𝑖𝜙(𝑤)

𝑤𝑖𝜁(𝑢,𝑤)
− 1−𝛼𝑖

𝑤𝑖
∀𝑖 ∈ J𝑑2K. (6.73b)

We would like to find 𝑔* := 𝑔*(𝑝, 𝑟) such that −𝑔(−𝑔*) = (𝑝, 𝑟). First, if 𝑝 = 0, it is

easy to see from (6.73) that:

𝑔*𝑝𝑖 = 0 ∀𝑖 ∈ J𝑑1K, (6.74a)

𝑔*𝑟𝑖 = −
1+𝛼𝑖

𝑟𝑖
∀𝑖 ∈ J𝑑2K. (6.74b)
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For the case 𝑝 ̸= 0, let us show that without loss of generality, we may assume 𝑝 ∈

R≥. Fix 𝜁 := 𝜁(−𝑔*𝑝,−𝑔*𝑟). Let 𝑄 ∈ R𝑑1×𝑑1 be a suitable Householder transformation

mapping 𝑝 ∈ R𝑑1 to a vector of zeros except for one entry that is equal to ‖𝑝‖. Let

𝑔*‖𝑝‖ denote the 𝑝-component of the conjugate gradient at (‖𝑝‖, 𝑟) ∈ int(𝒦*
rpower).

Since the function 𝜁 is invariant to orthonormal transformations on the first input,

𝑓(𝑢,𝑤) = 𝑓(𝑄𝑢,𝑤). (6.75)

It is also easy to see from the definition of the dual gradient in (6.2) that this implies:

𝑔*𝑝 = 𝑄⊤𝑔*𝑄𝑝. (6.76)

From (6.73a):

𝑔*𝑝 =
𝜁𝑝
2
. (6.77)

Due to (6.76) and the invariance of 𝜁 to transformation by 𝑄⊤:

𝜁 = 𝜁(−𝑔*𝑝,−𝑔*𝑟) = 𝜁(−𝑄⊤𝑔*𝑄𝑝,−𝑔*𝑟) = 𝜁(−𝑔*‖𝑝‖,−𝑔*𝑟) =
2𝑔*‖𝑝‖
‖𝑝‖ . (6.78)

Substituting into (6.77):

𝑔*𝑝 =
𝑔*‖𝑝‖·𝑝
‖𝑝‖ , (6.79)

where 𝑔*‖𝑝‖ ∈ R≥ can be computed as for the 𝑝 ∈ R≥ case.

Suppose 𝑝 ∈ R≥ from hereon. Due to (6.73a), we need:

𝜁 =
2𝑔*𝑝
𝑝
. (6.80)

Since 𝜁 > 0, we have 𝑔*𝑝 > 0. From (6.73b):

𝑟𝑖 =
2𝛼𝑖𝜙(−𝑔*𝑟)

−𝑔*𝑟𝑖𝜁
− 1−𝛼𝑖

𝑔*𝑟𝑖
∀𝑖 ∈ J𝑑2K, (6.81a)

⇒ 𝑟𝑖(−𝑔*𝑟𝑖)𝜁 = 2𝛼𝑖𝜙(−𝑔*𝑟) + (1− 𝛼𝑖)𝜁 ∀𝑖 ∈ J𝑑2K. (6.81b)
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Applying 𝜙 to both sides, across all 𝑖:

𝜙(𝑟)𝜙(−𝑔*𝑟)𝜁2 = 𝜙(2𝛼𝑖𝜙(−𝑔*𝑟) + (1− 𝛼𝑖)𝜁). (6.82)

Substituting for 𝜙(−𝑔*𝑟) = 𝜁+𝑔*𝑝
2 =

2𝑔*𝑝
𝑝

+𝑔*𝑝
2 and the expression for 𝜁 from (6.80):

𝜙(𝑟)
(︀2𝑔*𝑝

𝑝
+ 𝑔*𝑝

2
)︀(︀2𝑔*𝑝

𝑝

)︀2
= 𝜙

(︀
2𝛼𝑖(

2𝑔*𝑝
𝑝

+ 𝑔*𝑝
2) + (1− 𝛼𝑖)

2𝑔*𝑝
𝑝

)︀
. (6.83)

We treat this as a root-finding problem for 𝑔*𝑝. Taking the logarithm of both sides in

(6.83) and rearranging, we would like to find a root for ℎ(𝑔*𝑝) = 0, where 𝑝, 𝑔*𝑝 > 0.

Due to Lemma 6.3.6, this can be done with a quadratically convergent Newton-

Raphson method. Due to (6.81b), the solution can be used to compute 𝑔*𝑟 with:

𝑔*𝑟𝑖 = −
1
𝑟𝑖𝜁

(2𝛼𝑖𝜙(−𝑔*𝑟) + (1− 𝛼𝑖)𝜁) = −
𝛼𝑖(1+𝑝𝑔*𝑝)+1

𝑟𝑖
∀𝑖 ∈ J𝑑2K, (6.84)

which shows (6.36). Combining (6.69) with (6.84) gives (6.37).

Although not necessary for (6.36) and (6.37), let us derive an upper bound on 𝑔*𝑝.

Computationally, we find this bound to provide a good initial estimate while solving

ℎ(𝑔*𝑝) = 0. From (6.81a), we have that:

𝑟𝑖𝑔
*
𝑟𝑖
= −2𝛼𝑖𝜙(−𝑔*𝑟)

𝜁
− (1− 𝛼𝑖) ∀𝑖 ∈ J𝑑2K

(6.85a)

⇒
∑︀

𝑗∈J𝑑2K:𝑗 ̸=𝑖−𝑟𝑗𝑔*𝑟𝑗𝛼𝑖 =
∑︀

𝑗∈J𝑑2K:𝑗 ̸=𝑖
2𝛼𝑖𝛼𝑗𝜙(−𝑔*𝑟)

𝜁
+
∑︀

𝑗∈J𝑑2K:𝑗 ̸=𝑖 𝛼𝑖(1− 𝛼𝑗) ∀𝑖 ∈ J𝑑2K.

(6.85b)

Multiplying (6.85a) by (1− 𝛼𝑖) and adding (6.85b), we get:

(1− 𝛼𝑖)𝑟𝑖𝑔
*
𝑟𝑖
−

∑︀
𝑗∈J𝑑2K:𝑗 ̸=𝑖 𝛼𝑖𝑟𝑗𝑔

*
𝑟𝑗
= −1 + 𝑑2𝛼𝑖 ∀𝑖 ∈ J𝑑2K. (6.86)
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Combining (6.86) with (6.1):

𝑟𝑖𝑔
*
𝑟𝑖
+

−1+𝑑2𝛼𝑖−(1−𝛼𝑖)𝑟𝑖𝑔
*
𝑟𝑖

−𝛼𝑖
+ 𝑝𝑔*𝑝 = −𝑑2 − 1 ∀𝑖 ∈ J𝑑2K (6.87a)

⇒ −𝑔*𝑟𝑖 =
𝛼𝑖+1+𝑝𝑔*𝑝𝛼𝑖

𝑟𝑖
∀𝑖 ∈ J𝑑2K. (6.87b)

Next, since −𝑔* ∈ int(𝒦rpower), we have that

𝑔*𝑝 <
√︀

𝜙(−𝑔*𝑟) (6.88a)

=

√︁
𝜙
(︀𝛼+1+𝛼𝑝𝑔*𝑝

𝑟

)︀
(6.88b)

= 1√
𝜙(𝑟/𝛼)

√︁
𝜙
(︀
1 + 𝛼−1 + 𝑝𝑔*𝑝

)︀
(6.88c)

≤ 1√
𝜙(𝑟/𝛼)

∑︀
𝑖∈J𝑑2K(𝛼𝑖 + 1 + 𝛼𝑖𝑝𝑔

*
𝑝) (6.88d)

= 1√
𝜙(𝑟/𝛼)

(1 + 𝑑2 + 𝑝𝑔*𝑝) (6.88e)

⇒ 𝑔*𝑝 ≤ 1+𝑑2√
𝜙(𝑟/𝛼)−𝑝

. (6.88f)

The second inequality comes from the weighted version of the arithmetic-mean-

geometric-mean inequality [Chares, 2009, Page 128].

6.5.4 Infinity norm cone

Proof of Lemma 6.3.8. Let 𝑦 < 0 denote the negative root of:

ℎ(𝑦) := 𝑝𝑦 +
∑︀

𝑖∈J𝑑K

√︀
1 + 𝑟2𝑖 𝑦

2 + 1. (6.89)

The derivatives of ℎ are:

ℎ′(𝑦) = 𝑝+ 𝑦
∑︀

𝑖∈J𝑑K 𝑟
2
𝑖 (1 + 𝑟2𝑖 𝑦

2)−1/2, (6.90a)

ℎ′′(𝑦) =
∑︀

𝑖∈J𝑑K 𝑟
2
𝑖 (1 + 𝑟2𝑖 𝑦

2)−3/2 ≥ 0. (6.90b)
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Once again, ℎ can have at most one root 𝑦 on the halfline 𝑦 ≤ 0 since:

ℎ′(𝑦) ≥ 𝑝+ 𝑦
∑︀

𝑖∈J𝑑K
𝑟2𝑖√
𝑟2𝑖 𝑦

2
(6.91a)

= 𝑝+ 𝑦
∑︀

𝑖∈J𝑑K
𝑟2𝑖

|𝑦||𝑟𝑖| (6.91b)

= 𝑝−
∑︀

𝑖∈J𝑑K|𝑟𝑖| (6.91c)

> 0. (6.91d)

The last line follows from (𝑝, 𝑟) ∈ int(𝒦*
ℓ∞
). Since ℎ is increasing and convex, a root-

finding Newton-Raphson method will converge quadratically from any 𝑦+ ≥ 𝑦 [Süli

and Mayers, 2003, Theorem 1.9]. Consider the function:

ℎ̄(𝑦) := 𝑦
(︀
𝑝−

∑︀
𝑖∈J𝑑K|𝑟𝑖|

)︀
+ 1 (6.92a)

= 𝑝𝑦 +
∑︀

𝑖∈J𝑑K|𝑟𝑖||𝑦|+ 1 (6.92b)

≤ ℎ(𝑦). (6.92c)

The root of ℎ̄ is at 𝑦 = −(𝑝 −
∑︀

𝑖∈J𝑑K|𝑟𝑖|)−1. Since ℎ is increasing in 𝑦, we may use

this for 𝑦+. Alternatively, we could use:

ℎ̄(𝑦) := 𝑝𝑦 + 𝑑+ 1 ≤ ℎ(𝑦), (6.93)

and its root gives 𝑦+ = −𝑑+1
𝑝

.

Proof of Proposition 6.3.9. Let (𝑢,𝑤) ∈ int(𝒦ℓ∞) and define 𝜁𝑖(𝑢,𝑤) := 𝑢2 − 𝑤2
𝑖 for

all 𝑖 ∈ J𝑑K. Then the gradient of 𝑓 is:

𝑔𝑢 = 𝑑−1
𝑢
−

∑︀
𝑖∈J𝑑K

2𝑢
𝜁𝑖(𝑢,𝑤)

, (6.94a)

𝑔𝑤𝑖
= 2𝑤𝑖

𝜁𝑖(𝑢,𝑤)
∀𝑖 ∈ J𝑑K. (6.94b)

We would like to find 𝑔* := 𝑔*(𝑝, 𝑟) such that −𝑔(−𝑔*(𝑝, 𝑟)) = (𝑝, 𝑟). Let us fix
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𝜁𝑖 := 𝑔*𝑝
2 − 𝑔*𝑟𝑖

2 for all 𝑖 ∈ J𝑑K. From (6.94b), for all 𝑖 ∈ J𝑑K:

𝑟𝑖 =
2𝑔*𝑟𝑖
𝜁𝑖

(6.95a)

⇒ 1
2
(𝑔*𝑝

2 − 𝑔*𝑟𝑖
2)𝑟𝑖 = 𝑔*𝑟𝑖 . (6.95b)

This implies the signs of 𝑟𝑖 and 𝑔*𝑟𝑖 equal for all 𝑖 ∈ J𝑑K, and:

𝑔*𝑟𝑖 =

⎧⎪⎨⎪⎩0 𝑟𝑖 = 0,
√

1+𝑟2𝑖 𝑔
*
𝑝
2−1

𝑟𝑖
𝑟𝑖 ̸= 0.

(6.96)

Substituting into the definition for 𝜁𝑖, for all 𝑖 ∈ J𝑑K:

𝜁𝑖 =

⎧⎪⎨⎪⎩𝑔*𝑝
2 𝑟𝑖 = 0,

−2+2
√

1+𝑟2𝑖 𝑔
*
𝑝
2

𝑟2𝑖
𝑟𝑖 ̸= 0,

(6.97)

From (6.94a):

𝑑− 1−
∑︀

𝑖∈J𝑑K
2𝑔*𝑝

2

𝜁𝑖
= 𝑝𝑔*𝑝 (6.98a)

⇔ 𝑑− 1−
∑︀

𝑖∈J𝑑K:𝑟𝑖 ̸=0

2𝑔*𝑝
2𝑟2𝑖

−2+2
√

1+𝑟2𝑖 𝑔
*
𝑝
2
+
∑︀

𝑖∈J𝑑K:𝑟𝑖=0 2 = 𝑝𝑔*𝑝 (6.98b)

⇔ 𝑑− 1−
∑︀

𝑖∈J𝑑K:𝑟𝑖 ̸=0

𝑔*𝑝
2𝑟2𝑖 (−1−

√
1+𝑟2𝑖 𝑔

*
𝑝
2)

1−(1+𝑟2𝑖 𝑔
*
𝑝
2)

+
∑︀

𝑖∈J𝑑K:𝑟𝑖=0 2 = 𝑝𝑔*𝑝 (6.98c)

⇔ 𝑝𝑔*𝑝 +
∑︀

𝑖∈J𝑑K

√︁
1 + 𝑟2𝑖 𝑔

*
𝑝
2 + 1 = 0. (6.98d)

We treat (6.98d) as a root-finding problem in the variable 𝑔*𝑝 < 0, which can be

easily solved due to Lemma 6.3.8. The expression for 𝑔*𝑟 is obtained from (6.96).

6.6 Proofs of inverse Hessian operators

For 𝒦,𝒦* ⊂ R1+𝑑, where 𝒦 is either 𝒦hpower or 𝒦rpower parametrized by 𝛼, let 𝑢̃ =

(𝑢,𝑤) ∈ int(𝒦), and 𝑥̃ = (𝑥, 𝑧) ∈ R1+𝑑 be an arbitrary direction. Due to [Nesterov
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and Todd, 1997, Equation (2.11)]:

𝐻(𝑢̃)−1 · 𝑥̃ = 𝐻*(−𝑔(𝑢̃)) · 𝑥̃. (6.99)

Therefore to derive the inverse Hessian operator 𝐻(𝑢̃)−1 · 𝑥̃, we may derive an expres-

sion for 𝐻*(𝑝) · 𝑥̃, for arbitrary 𝑝 = (𝑝, 𝑟) ∈ int(𝒦*), and substitute −𝑔(𝑢̃) for 𝑝. In

a practical implementation of a PDIPM, 𝑔(𝑢̃) is usually already available at the time

when 𝐻(𝑢̃)−1 is needed. Note that:

𝐻*(𝑝) · 𝑥̃ = d
d 𝑡
𝑔*(𝑝+ 𝑡𝑥̃)

⃒⃒
𝑡=0

. (6.100)

For convenience, we let 𝑝(𝑡) = 𝑝 + 𝑡𝑥̃ and we let 𝑔*(𝑡) denote the conjugate gradient

at 𝑝(𝑡). We use ′ to denote derivatives with respect to the linearization variable 𝑡, i.e.

𝐻*(𝑝) · 𝑥̃ = 𝑔*′(0).

6.6.1 Hypograph power cone

Proof of Proposition 6.4.1. Differentiating (6.63) and (6.64) at 𝑝(𝑡) with respect to 𝑡

gives rise to the nonlinear system (which we wish to solve for 𝑔*′(𝑡)):

𝑥 = (𝜙(−𝑔*𝑟(𝑡)) + 𝑔*𝑝(𝑡))
−2( 𝑑

𝑑𝑡
𝜙(−𝑔*𝑟(𝑡)) + 𝑔*𝑝

′(𝑡)), (6.101a)

𝑧𝑖 = 𝑔*𝑟𝑖(𝑡)
−2𝑔*𝑟𝑖

′(𝑡)(−𝑝𝛼𝑖𝜙(−𝑔*𝑟(𝑡)) + 1)− 𝑔*𝑟𝑖(𝑡)
−1𝛼𝑖(−𝑥𝜙(−𝑔*𝑟(𝑡))−

𝑝 𝑑
𝑑𝑡
𝜙(−𝑔*𝑟(𝑡))) ∀𝑖 ∈ J𝑑K.

(6.101b)

From the chain rule:

𝑑
𝑑𝑡
𝜙(−𝑔*𝑟(𝑡)) = 𝜙(−𝑔*𝑟(𝑡))

∑︀
𝑖∈J𝑑K 𝛼𝑖(𝑔

*
𝑟𝑖
(𝑡))−1𝑔*𝑟𝑖

′(𝑡). (6.102)

From hereon let us drop the variable 𝑡 from our notation for brevity. Define:

𝐾 :=
∑︀

𝑖∈J𝑑K 𝛼𝑖𝑔
*
𝑟𝑖
−1𝑔*𝑟𝑖

′. (6.103)
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From (6.101b), for all 𝑖 ∈ J𝑑K:

𝑔*𝑟𝑖
′ = 𝑔*𝑟𝑖

2 · 𝑧𝑖+𝑔*𝑟𝑖
−1𝛼𝑖(−𝑥𝜙(−𝑔*𝑟)−𝑝𝜙(−𝑔*𝑟)𝐾)

−𝑝𝛼𝑖𝜙(−𝑔*𝑟)+1
. (6.104)

Multiplying (6.104) by 𝛼𝑖𝑔
*
𝑟𝑖
−1 and summing over all 𝑖 ∈ J𝑑K gives:

𝐾 =
∑︀

𝑖∈J𝑑K
𝑧𝑖𝛼𝑖𝑔

*
𝑟𝑖
+𝛼2

𝑖𝜙(−𝑔*𝑟)(−𝑥−𝑝𝐾)

−𝑝𝛼𝑖𝜙(−𝑔*𝑟)+1
(6.105a)

⇒ 𝐾 =
(︀
1 + 𝜙(−𝑔*𝑟)𝑝

∑︀
𝑗∈J𝑑K

𝛼2
𝑗

1−𝑝𝛼𝑗𝜙(−𝑔*𝑟)

)︀−1∑︀
𝑖∈J𝑑K

𝑧𝑖𝛼𝑖𝑔
*
𝑟𝑖
+𝛼2

𝑖𝜙(−𝑔*𝑟)(−𝑥)

1−𝑝𝛼𝑖𝜙(−𝑔*𝑟)
. (6.105b)

We remark that for the uniform 𝛼 = 𝑒/𝑑 case, 𝐾 takes the simple form:

𝐾 = 𝑑−1
(︀∑︀

𝑖∈J𝑑K 𝑧𝑖𝑔
*
𝑟𝑖
− 𝑥𝜙(−𝑔*𝑟)

)︀
. (6.106)

From (6.101a) and (6.104) we can obtain 𝑔*𝑝
′ and 𝑔*𝑟

′ in closed form. Let:

𝑘1,𝑖 := 1− 𝛼𝑖𝜙(−𝑔*𝑟)𝑝 ∀𝑖 ∈ J𝑑K, (6.107a)

𝑘2 :=
∑︀

𝑖∈J𝑑K
𝛼2
𝑖

𝑘1,𝑖
, (6.107b)

𝑘3 := 1 + 𝜙(−𝑔*𝑟)𝑝𝑘2. (6.107c)

Then from (6.101) and (6.104) (multiplication between vectors below should be in-

terpreted elementwise):

𝑔*𝑝
′ = (𝜙(−𝑔*𝑟) + 𝑔*𝑝)

2𝑥−𝐾𝜙(−𝑔*𝑟) (6.108a)

=
(︀
𝜁(−𝑔*𝑝,−𝑔*𝑟)2 +

𝑘2𝑔*𝑝
2

𝑘3

)︀
𝑥− 𝜙(−𝑔*𝑟)

𝑘3
⟨𝑧, 𝛼𝑔

*
𝑟

𝑘0
⟩, (6.108b)

𝑔*𝑟𝑖
′ = 𝑔*𝑟𝑖

2 · 𝑧𝑖+𝑔*𝑟𝑖
−1𝛼𝑖(−𝑥𝜙(−𝑔*𝑟)−𝑝𝜙(−𝑔*𝑟)𝐾)

𝑘1,𝑖
(6.108c)

=
𝑔*𝑟𝑖

2

𝑘1,𝑖
𝑧𝑖 −

𝛼𝑖𝑔
*
𝑟𝑖

𝑘1,𝑖

𝜙(−𝑔*𝑟)
𝑘3

𝑥− 𝑝𝜙(−𝑔*𝑟)
𝑘3
⟨𝑧, 𝛼𝑔

*
𝑟

𝑘0
⟩𝛼𝑖𝑔

*
𝑟𝑖

𝑘1,𝑖
∀𝑖 ∈ J𝑑K. (6.108d)

Applying (6.99) gives the desired result.
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6.6.2 Radial power cone

Proof of Proposition 6.4.2. Let:

𝐾 :=
∑︀

𝑖∈J𝑑2K 𝛼𝑖(𝑔
*
𝑟𝑖
(𝑡))−1𝑔*𝑟𝑖

′(𝑡). (6.109)

For 𝜙 defined in (6.31), we have that:

d
d 𝑡
𝜙(−𝑔*𝑟(𝑡)) =

∑︀
𝑖∈J𝑑2K 𝜙(−𝑔*𝑟(𝑡)) · 2𝛼𝑖(−𝑔*𝑟𝑖(𝑡))

−1(−𝑔*𝑟𝑖
′(𝑡)) (6.110a)

= 2𝜙(−𝑔*𝑟)𝐾. (6.110b)

We fix 𝜁 := 𝜁(−𝑔*𝑝,−𝑔*𝑟) for convenience. We start by differentiating (6.80) at

𝑝(𝑡) with respect to a linearization variable 𝑡, which we omit for brevity:

𝑥𝑖 = 2
(︀𝑔*𝑝𝑖

′

𝜁
− 𝑔*𝑝𝑖

𝜁2
(2𝜙(−𝑔*𝑟)𝐾 − 2⟨𝑔*𝑝, 𝑔*𝑝

′⟩)
)︀

∀𝑖 ∈ J𝑑1K. (6.111)

We use (6.111) to obtain a new expression for ⟨𝑔*𝑝, 𝑔*𝑝′⟩:

⟨𝑥, 𝑔*𝑝⟩ = 2
(︀ ⟨𝑔*𝑝′,𝑔*𝑝⟩

𝜁
− ‖𝑔*𝑝‖2

𝜁2
(2𝜙(−𝑔*𝑟)𝐾 − 2⟨𝑔*𝑝, 𝑔*𝑝

′⟩)
)︀

(6.112a)

⇒ ⟨𝑔*𝑝, 𝑔*𝑝
′⟩ = 𝜁2

2𝑘1

(︀
⟨𝑥, 𝑔*𝑝⟩+

4‖𝑔*𝑝‖2

𝜁2
· 𝜙(−𝑔*𝑟)𝐾

)︀
, (6.112b)

where we define:

𝑘1 := 𝜙(−𝑔*𝑟) + ‖𝑔*𝑝‖2. (6.113)

Next, we differentiate (6.81b), for all 𝑖 ∈ J𝑑2K:

− 𝑧𝑖𝑔
*
𝑟𝑖
𝜁 − 𝑟𝑖𝑔

*
𝑟𝑖
′𝜁 − 2𝑟𝑖𝑔

*
𝑟𝑖
(𝜙(−𝑔*𝑟)𝐾 − ⟨𝑔*𝑝, 𝑔*𝑝

′⟩) =

4𝛼𝑖𝜙(−𝑔*𝑟)𝐾 + 2(1− 𝛼𝑖)(𝜙(−𝑔*𝑟)𝐾 − ⟨𝑔*𝑝, 𝑔*𝑝
′⟩),

(6.114)
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whence, for all 𝑖 ∈ J𝑑2K (replacing ⟨𝑔*𝑝, 𝑔*𝑝′⟩ using (6.112b)):

−𝑟𝑖𝑔*𝑟𝑖
′𝜁 = 4𝛼𝑖𝜙(−𝑔*𝑟)𝐾 + 2(1− 𝛼𝑖 + 𝑟𝑖𝑔

*
𝑟𝑖
)(𝜙(−𝑔*𝑟)𝐾 − ⟨𝑔*𝑝, 𝑔*𝑝

′⟩) + 𝑧𝑖𝑔
*
𝑟𝑖
𝜁

(6.115a)

= 4𝛼𝑖𝜙(−𝑔*𝑟)𝐾 − 4𝛼𝑖
𝜙(−𝑔*𝑟)

𝜁
(𝜙(−𝑔*𝑟)𝐾 − ⟨𝑔*𝑝, 𝑔*𝑝

′⟩) + 𝑧𝑖𝑔
*
𝑟𝑖
𝜁 (6.115b)

= 2𝛼𝑖𝜙(−𝑔*𝑟)
𝑘1

(︀
2‖𝑔*𝑝‖2𝐾 + 𝜁⟨𝑔*𝑝, 𝑥⟩

)︀
+ 𝑧𝑖𝑔

*
𝑟𝑖
𝜁. (6.115c)

In the second equality we use the identity, for all 𝑖 ∈ J𝑑2K:

1− 𝛼𝑖 + 𝑟𝑖𝑔
*
𝑟𝑖
= 𝛼𝑖

(︀
⟨𝑝,−𝑔*𝑝⟩ − 2

)︀
= −2𝛼𝑖

(︁
‖𝑔*𝑝‖2

𝜁
+ 1

)︁
= −2𝛼𝑖

𝜙(−𝑔*𝑟)
𝜁

, (6.116)

which can be derived by the same logic as in (6.87), then using (6.80). In the third

equality we substitute (6.112b).

Substituting into 𝑔*𝑟𝑖
′ from (6.115c) into (6.109):

𝐾 = −
∑︀

𝑖∈J𝑑2K 𝛼𝑖(𝑔
*
𝑟𝑖
)−1 2𝛼𝑖𝜙(−𝑔*𝑟)𝑘

−1
1

(︀
2‖𝑔*𝑝‖2𝐾+𝜁⟨𝑔*𝑝,𝑥⟩

)︀
−𝑧𝑖(−𝑔*𝑟𝑖 )𝜁

𝑟𝑖𝜁
(6.117a)

=
−2𝑘2𝑘

−1
1 𝜙(−𝑔*𝑟)⟨𝑥,𝑔*𝑝⟩−⟨𝛼/𝑟,𝑧⟩

1+4𝑘2𝑘
−1
1 𝜙(−𝑔*𝑟)‖𝑔*𝑝‖2

, (6.117b)

where:

𝑘2 := ⟨𝛼/𝑟, 𝛼/𝑔*𝑟⟩. (6.118)

We now replace ⟨𝑔*𝑝, 𝑔*𝑝′⟩ using (6.112b) and substitute for 𝐾 in (6.111) to obtain

𝑔*𝑝
′. Define for convenience:

𝑘3 :=
𝑘1

2𝜙(−𝑔*𝑟)
+ 2𝑘2

‖𝑔*𝑝‖2

𝜁
, (6.119)

then:

𝑔*𝑝
′ = 𝜁

(︀
𝑥
2
+

𝑔*𝑝
𝜁2
(2𝜙(−𝑔*𝑟)𝐾 − 2⟨𝑔*𝑝, 𝑔*𝑝

′⟩)
)︀

(6.120a)

= 𝜁
2
𝑥− 𝑔*𝑝

𝑘3

(︀2𝑘2𝜙(−𝑔*𝑟)+𝜁𝑘3
𝑘1

⟨𝑥, 𝑔*𝑝⟩+ ⟨𝛼/𝑟, 𝑧⟩
)︀
. (6.120b)
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Finally, substituting for 𝐾 in (6.115c) and rearranging, for all 𝑖 ∈ J𝑑2K:

𝑔*𝑟𝑖
′ = −𝑔*𝑟𝑖

𝑟𝑖
𝑧𝑖 +

𝛼𝑖

𝑘3𝑟𝑖

(︀
− ⟨𝑥, 𝑔*𝑝⟩+

2‖𝑔*𝑝‖2

𝜁
⟨𝛼/𝑟, 𝑧⟩

)︀
. (6.121)

Applying (6.99) to (6.120) and (6.121) gives the desired result.
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Chapter 7

Computational value of conjugate

gradients

In the first part of this chapter we empirically compare our conjugate gradient proce-

dures from Chapter 6 with a generic Newton method (in terms of numerical accuracy

and computational speed at numerically challenging points). This is done indepen-

dently to any interior point method. In the second part of this chapter our aim is

to empirically compare Hypatia’s default algorithm with the algorithm described by

Dahl and Andersen [2021] (that we occasionally refer to as MOSEK’s algorithm for

short) together with the conjugate gradient oracles from Chapter 6. In this part of the

chapter, we describe our Julia implementation of MOSEK’s algorithm (as a stepping

procedure in Hypatia).1 Our implementation includes a minor enhancement. We

give expressions for additional oracles required by the cones studied in Chapter 6 for

this implementation. We describe a test set of problems and report on the numerical

stability and iteration counts from both algorithms. We provide some concluding

remarks and opportunities for future work in the final part of the chapter.

1The full algorithm implemented by the MOSEK solver is not transparent to us and in this
chapter we only make comparisons between our implementations and not the MOSEK solver.
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7.1 Comparison with a generic approach

Conjugate gradients can always be evaluated by solving (6.2) using Newton’s method,

which we refer to as the generic approach. Although it should be unsurprising that

for 𝒦log, 𝒦logdet, 𝒦hgeom, 𝒦rtdet, and 𝒦rgeom, the closed form conjugate gradient ex-

pressions are more numerically stable and computationally cheaper to evaluate than

the generic approach, this may not be obvious for 𝒦hpower, 𝒦rpower, 𝒦ℓ∞ , and 𝒦ℓspec ,

where a numerical procedure is still needed. In this section we compare the numeri-

cal properties and computational efficacy of the conjugate gradient procedures from

Sections 6.3.1 to 6.3.4 against the generic approach. We test both approaches by

evaluating conjugate gradients at randomly generated points in the dual cone. Since

the procedures for 𝒦logdet, 𝒦rtdet, and 𝒦ℓspec mirror those of 𝒦log, 𝒦hgeom, and 𝒦ℓ∞ , we

omit the matrix variants for brevity.

We implement the generic approach as follows. The objective in (6.2) is self-

concordant. As described by Nesterov et al. [2018, Section 5.2], the objective can

be optimized by combining the damped Newton’s method with the full Newton’s

method. In particular, the Hessian 𝐻 of 𝑓 induces a local norm at any 𝑤 ∈ 𝒦 that

is given by ‖𝑧‖𝑤 =
√︀
⟨𝑧,𝐻(𝑤)−1𝑧⟩ for all 𝑧. When the local norm of the gradient

of the objective, that is ‖𝑟 + 𝑔(𝑤)‖𝑤 is less than 3−
√
5

2
, Newton’s method begins to

converge quadratically. We stop iterating when the local norm of the gradient is

lower than some tolerance 𝜖. In our experiments we set 𝜖 to 1000 times machine zero.

Alternatively, we stop if we detect insufficient progress between consecutive iterations

(this happens when numerical error causes Newton’s method to stall). The procedure

is summarized in Algorithm 1.

For each of the cones 𝒦log, 𝒦hgeom, 𝒦hpower, 𝒦rgeom, 𝒦rpower, we generate a random

dual point by generating a random 𝑟𝑖 variable in (0, 1) for 𝑖 ∈ J𝑑K and for 𝒦log, we

also generate a random 𝑝 variable. We generate the epigraph variable 𝑞 by letting

the relative violation on the epigraph or hypograph inequality in the cone equal some

offset fraction 𝑜 ∈ (0, 1). For example, for 𝒦log, given randomly generated 𝑟 and 𝑝,
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Algorithm 1 Newton’s method for computing a conjugate gradient.
1: procedure compute 𝑔*(𝑟)
2: Require: 𝑟, 𝜖, 𝑤0, oracles for 𝑔(𝑤), 𝐻(𝑤)−1

3: 𝑤 ← 𝑤0

4: 𝜆1 ←
√︀
⟨𝑔(𝑤) + 𝑟,𝐻(𝑤)−1(𝑔(𝑤) + 𝑟)⟩ =

√︀
𝜈 − 2⟨𝑤, 𝑟⟩+ ⟨𝑟,𝐻(𝑤)−1𝑟⟩

5: 𝑗 ← 1
6: while 𝜆𝑗 > 𝜖 do
7: if 𝜆𝑗 >

3−
√
5

2
then

8: 𝛼← (1 + 𝜆𝑗)
−1 ◁ damped Newton’s method

9: else
10: 𝛼← 1 ◁ full Newton’s method
11: end if
12: 𝑤 ← 𝑤 − 𝛼𝐻(𝑤)−1(𝑔(𝑤) + 𝑟)
13: 𝜆𝑗 ←

√︀
⟨𝑔(𝑤) + 𝑟,𝐻(𝑤)−1(𝑔(𝑤) + 𝑟)⟩ =

√︀
𝜈 − 2⟨𝑤, 𝑟⟩+ ⟨𝑟,𝐻(𝑤)−1𝑟⟩

14: if 𝜆𝑗 >
3−

√
5

2
and 𝜆𝑗 > 1000

(︀ 𝜆𝑗−1

1−𝜆𝑗−1

)︀2 then
15: break ◁ slow progress
16: end if
17: 𝑗 ← 𝑗 + 1
18: end while
19: return −𝑤
20: end procedure

we let:

𝑞 = 𝑝
∑︀

𝑖∈J𝑑K log(−
𝑟𝑖
𝑝
) + 𝑝𝑑, (7.1a)

𝑞 = 𝑞 × (1 + sgn(𝑞)× 𝑜), (7.1b)

which ensures (𝑝, 𝑞, 𝑟) ∈ int(𝒦*
log) and 𝑜 controls proximity to the boundary. At each

dual point, we measure violation on (6.1):

|⟨𝑔*(𝑧), 𝑧⟩+ 𝜈|, (7.2)

where 𝑔*(𝑧) is obtained by one of two procedures. Note that the term inside the

absolute value of (7.2) should be positive at −𝑔*(𝑧) ∈ 𝒦, but could be negative from

numerical approximation. To measure computational cost, we count the number of

Newton iterations taken by the generic approach and if applicable, the number of

steps taken by the Newton-Raphson methods from Lemmas 6.3.3, 6.3.6 and 6.3.8.
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In Table 7.1 we give the average number of iterations from each approach over 10

randomly generated points (and randomly generated 𝛼 for 𝒦hpower and 𝒦rpower). Re-

call that an iteration of the generic Newton’s method requires applying an inverse

Hessian matrix of side dimension 𝑑. It is clear that each iteration of the generic

Newton’s method is much more expensive then an iteration of a univariate Newton-

Raphson method or evaluating the conjugate gradient in closed form. Additionally,

in all experiments the generic Newton’s method requires many more iterations than

the univariate Newton-Raphson method, and the number of iterations for the generic

approach grows as 𝑑 increases and the offset from the boundary 𝑜 decreases. For the

specialized conjugate gradient procedures, the iteration counts remain fairly constant

(usually 2–6) for different 𝑑. See Table 7.1 for details. We also plot the violation

on (7.2) against number of Newton iterations in Figure 7-1, for the first randomly

generated dual point. The final violation from the specialized methods is marked

by an ‘o’. Unlike the specialized methods, more iterations of the damped Newton

method are generally required as the offset from the cone boundary decreases. Fi-

nally, in Table 7.2 we show the mean value of (7.2) across 10 randomly generated

points. In general, the residuals are similar or slightly more favorable (i.e. lower) for

the specialized methods, and in a few cases the multivariate Newton method didn’t

converge (from numerical issues). The code for these experiments can be found at

https://github.com/lkapelevich/conjgradexperiments. In our implementation

we take the Newton-Raphson step in higher precision (using Julia’s BigFloat number

type), which is relatively inexpensive (since it only involves elementary operations on

scalars and not any matrices or vectors) and particularly helpful near the end of the

Newton-Raphson method for 𝒦ℓ∞ .
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Figure 7-1: Value of (7.2) against iterations of damped and full Newton’s method
at the first randomly generated dual point with 𝑑 = 60.
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𝑑 𝑜 𝒦log 𝒦hpower 𝒦hgeom 𝒦rpower 𝒦rgeom 𝒦ℓ∞

g g s g g s g g s

20

10−5 98. 88. 2.0 27. 88. 3.0 27. 41. 2.0
10−4 84. 75. 2.0 27. 74. 3.0 27. 36. 3.0
10−3 70. 61. 3.0 27. 60. 3.0 27. 30. 4.0
10−2 56. 46. 3.0 27. 46. 4.0 26. 24. 5.0
10−1 40. 31. 4.0 25. 31. 4.0 24. 17. 5.0

40

10−5 196. 130. 2.0 37. 127. 3.0 37. 46. 3.0
10−4 160. 108. 2.0 37. 105. 3.0 37. 40. 4.0
10−3 124. 85. 3.0 37. 83. 3.0 37. 34. 5.0
10−2 90. 63. 3.0 37. 62. 3.4 36. 27. 6.0
10−1 57. 41. 4.0 33. 41. 4.0 33. 19. 5.0

60

10−5 301. 218. 2.0 46. 211. 3.0 45. 50. 3.1
10−4 240. 170. 2.0 46. 164. 3.0 45. 44. 4.3
10−3 180. 124. 3.0 46. 120. 3.0 45. 38. 5.5
10−2 124. 83. 3.0 45. 81. 3.0 44. 30. 6.0
10−1 76. 50. 4.0 40. 50. 4.0 39. 21. 5.0

Table 7.1: Mean number of iterations using a generic Newton method (g), and when
applicable, univariate Newton-Raphson from specialized methods (s) over 10 random
points.

𝑑 𝑜 𝒦log 𝒦hpower 𝒦hgeom 𝒦rpower 𝒦rgeom 𝒦ℓ∞

g s g s g s g s g s g s

20

10−5 -8.7 -9.6 -9.5 -9.7 -14. -14. -9.5 -9.9 -13. -14. -11. -11.
10−4 -9.9 -10. -11. -11. -13. -14. -11. -11. -13. -14. -12. -12.
10−3 -11. -11. -12. -12. -14. -14. -12. -12. -13. -14. -13. -13.
10−2 -12. -12. -13. -13. -14. -14. -13. -13. -14. -14. -13. -14.
10−1 -13. -13. -13. -14. -14. -14. -14. -14. -14. -14. -14. -14.

40

10−5 -8.1 -9.3 -9.2 -9.2 -13. -14. -9.1 -9.4 -13. -14. -11. -11.
10−4 -9.2 -9.9 -10. -10. -14. -14. -10. -10. -13. -14. -12. -12.
10−3 -10. -11. -11. -11. -14. -14. -11. -12. -13. -14. -12. -13.
10−2 -11. -12. -12. -12. -13. -14. -12. -12. -14. -14. -13. -14.
10−1 -12. -13. -13. -14. -14. -14. -13. -13. -14. -14. -13. -14.

60

10−5 -0.5 -8.4 -9.1 -9.0 -13. -13. -9.1 -9.0 -13. -13. -11. -11.
10−4 -9.0 -9.5 -10. -10. -13. -13. -10. -10. -13. -13. -12. -12.
10−3 -9.7 -11. -11. -11. -13. -13. -11. -11. -13. -14. -12. -13.
10−2 -11. -12. -12. -12. -13. -13. -12. -12. -13. -13. -13. -13.
10−1 -12. -12. -13. -13. -13. -13. -13. -13. -13. -14. -13. -14.

Table 7.2: log10 of mean value of (7.2) using a generic Newton method (g) and
specialized methods (s) over 10 random points.
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7.2 Practical implementation considerations

We give a high-level description of MOSEK’s algorithm and describe some of the prac-

tical considerations we make while implementing the algorithm in Hypatia’s frame-

work. In some places, our implementation deviates from the algorithm described by

Dahl and Andersen [2021].

7.2.1 Summary of MOSEK’s algorithm

We start by describing the high-level steps of the algorithm proposed by Dahl and

Andersen [2021]. We use the same notation as in Chapter 2. Recall that in each

iteration of Hypatia’s algorithm, search directions are computed by solving (2.25)

with different RHSs. In MOSEK’s algorithm, (2.25) takes the form:

𝐸𝛿 = 𝑟𝐸, (7.3a)

𝛿𝑧,𝑘 + 𝐻̄𝑘𝛿𝑠,𝑘 = 𝑟𝑘 ∀𝑘 ∈ J𝐾̄K. (7.3b)

Critically, 𝜇𝐻𝑘(𝑠𝑘) is replaced by 𝐻̄𝑘 in the final equation. 𝐻̄𝑘 is a scaling matrix.

Recall that the scaling matrices MOSEK’s algorithm uses are based on a technique

by Myklebust and Tunçel [2014], where low-rank updates are applied to the Hessian

or inverse Hessian, to obtain a matrix 𝐻̄ satisfying:

𝐻̄𝑠 = 𝑧, (7.4a)

𝐻̄𝑔*(𝑧) = 𝑔(𝑠). (7.4b)

Dahl and Andersen [2021] use:

𝐻̄ = 𝜇𝐻(𝑠) + 1
2𝜇𝜈

(𝜐1𝜐
⊤
2 + 𝜐2𝜐

⊤
1 )− 𝜇

𝜐3𝜐⊤
3

⟨𝑔*(𝑧),𝐻𝑔*(𝑧)⟩−𝜈−1⟨𝑔(𝑠),𝑔*(𝑧)⟩ , (7.5)
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where:

𝜐1 = 𝑧 + 𝜇𝑔(𝑠), (7.6a)

𝜐2 = 𝑧 − 𝜇𝑔(𝑠) + 1
𝜇𝜈−1⟨𝑔(𝑠),𝑔*(𝑧)⟩−1

𝜐1, (7.6b)

𝜐3 = −𝐻𝑔*(𝑧) + 𝜈−1⟨𝑔(𝑠), 𝑔*(𝑧)⟩𝑔(𝑠). (7.6c)

If our problem includes symmetric cones, we use the Nesterov Todd scaling point to

obtain 𝐻̄ instead, in the manner described by Vandenberghe [2010].

A high-level description of the stepper proposed by Dahl and Andersen [2021] can

be summarized as follows (with terminology from Chapter 2). At each iterate 𝜔:

1. Solve (7.3) for a centering direction, 𝛿𝑐, with 𝑟𝐸 = 0 and 𝑟𝑘 = −𝑧𝑘−𝜇𝑔𝑘(𝑠𝑘) for

all 𝑘 ∈ J𝐾̄K

2. Solve (7.3) for a prediction direction, 𝛿𝑝, with 𝑟𝐸 = −𝐸𝜔 and 𝑟𝑘 = −𝑧𝑘 for all

𝑘 ∈ J𝐾̄K

3. Solve (7.3) for a prediction adjustment direction, 𝛿𝑝𝑡, with 𝑟𝐸 = 0 and 𝑟𝑘 =

1
2
∇3𝑓𝑘

[︀
𝛿𝑝𝑠,𝑘, (𝐻𝑘(𝑠𝑘))

−1𝛿𝑝𝑧,𝑘
]︀

for all 𝑘 ∈ J𝐾̄K

4. Compute (to tolerance) the maximum stepping distance to the cone boundary

𝛼𝑝 in the direction 𝛿𝑝 and use it to obtain a centering factor 𝛾 = (1−𝛼𝑝)min{(1−

𝛼𝑝)
2, 0.25}

5. For the combined direction 𝛿 := (1 − 𝛾)𝛿𝑝 + 𝛿𝑝𝑡 + 𝛾𝛿𝑐, estimate the maxi-

mum stepping distance 𝛼̂ := max{𝛼 : 𝜋⊥(𝜔
𝑖−1 + 𝛼𝛿) ≥ 𝛽

}︀
, where, 𝜋⊥(𝜔) :=

max𝑘∈J𝐾̄K{𝜋⊥,𝑘(𝜔)}, and,

𝜋⊥,𝑘(𝜔) :=

⎧⎪⎨⎪⎩
𝜈𝑘

𝜇(𝜔)⟨𝑔𝑘(𝑠𝑘),𝑔*𝑘(𝑧𝑘)⟩
if 𝜇(𝜔) > 0, 𝑠𝑘 ∈ int

(︀
𝒦̄𝑘

)︀
, 𝑧𝑘 ∈ int

(︀
𝒦̄*

𝑘

)︀
,

∞ otherwise
(7.7)

6. Update the current iterate as 𝜔 + 𝛼̂𝛿
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Let us highlight some key differences to Hypatia’s algorithm. There is no centering

adjustment direction 𝛿𝑐𝑡 and the combined direction 𝛿 is computed from 𝛿𝑝, 𝛿𝑝𝑡 and

𝛿𝑐 by a different heuristic (with different weights on each direction). The directions

𝛿𝑝, 𝛿𝑝𝑡 and 𝛿𝑐 are computed from a different LHS (due to (7.3)) and additionally, 𝛿𝑝𝑡

uses a different RHS to Hypatia. In particular, this new RHS requires evaluating

∇3𝑓𝑘
[︀
𝛿𝑝𝑠,𝑘, (𝐻𝑘(𝑠𝑘))

−1𝛿𝑝𝑧,𝑘
]︀
, which requires derivation (in Hypatia, we apply the third

order derivative to a single direction and this leads to some simplification). The

value 𝛼𝑝 is not calculated using any neighborhood and instead relies on estimating

distances to the cone boundary. Finally, the neighborhood used to compute the final

step length 𝛼̂ is different to 𝜋ℓ2 and 𝜋ℓ∞ that we define for Hypatia’s algorithm in

Chapter 2. The function 𝜋⊥ requires checking dual feasibility and calculating the

conjugate gradient for each cone.

We implement the above procedure as a stepper in Hypatia (the combined stepper

from Chapter 2 is the default stepper in Hypatia).2 Our implementation includes a

few differences that simplify the steps above and improve the counts of iterations or

robustness on Hypatia’s test problems. Instead of doing two separate linesearches for

𝛼𝑝 and 𝛼̂, we do a curve search similar to Section 2.4.5. The curve search is carried

out over the parameter 1 − 𝛾 and similar to Section 2.4.5, we check different values

in the schedule 𝒜. The combined direction with curve search that we use is:

𝛿 = (1− 𝛾1/3)
(︀
(1− 𝛾)𝛿𝑝 + 𝛿𝑝𝑡 + 𝛾𝛿𝑐

)︀
. (7.8)

Whereas curve search mainly improved iteration counts in Section 2.7, using curve

search with MOSEK’s algorithm increases robustness and allows us to solve more of

Hypatia’s (continuous integration) test instances. Additionally, this strategy avoids

the need to estimate the distance to the cone boundary (that is needed for 𝛼𝑝),

which can be expensive for some cones. The term 1− 𝛾1/3 is a heuristic that reverses

MOSEK’s choice of 𝛾 = (1−𝛼𝑝)min{(1−𝛼𝑝)
2, 0.25} from item 4 and does not restrict

the amount of centering applied. In our implementation we use 𝛽 = 0.01.

2The code is at https://github.com/lkapelevich/Hypatia.jl/tree/conjgrads2.
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7.2.2 Third order oracles for different directions

As described in the previous section, calculating 𝛿𝑝𝑡 requires evaluating the term

∇3𝑓𝑘
[︀
𝛿𝑝𝑠,𝑘, (𝐻𝑘(𝑠𝑘))

−1𝛿𝑝𝑧,𝑘
]︀
, which is not one of the oracles that Hypatia uses. We

provide some simplified expressions for 𝑇 := ∇3𝑓 [𝛿1, 𝛿2], for arbitrary directions 𝛿1

and 𝛿2, to help implement MOSEK’s algorithm for some of the cones studied in

Chapter 6 (𝑇 here is redefined from Chapter 3).

Logarithm and power-like cones

For 𝒦log, 𝒦logdet, 𝒦hpower, and 𝒦rtdet, the term 𝑇 can be inferred by deriving a more

general version for the barrier 𝑓(𝑢, 𝑣, 𝑤) = − log(𝑢− 𝑣𝜙(𝑤/𝑣))− logdet(𝑤), where 𝜙

is a function on a cone of squares of a Euclidean Jordan algebra, as in Chapter 3. In

other words, let us generalize our expressions from (3.49) for two different directions.

For 𝒦hpower and 𝒦rtdet, terms involving the perspective variable should be ignored. Let

𝜙 be either the sum of lograithms or the power-mean function, (𝑢, 𝑣, 𝑤) an interior

point, and:

𝜉(𝛿) := 𝑣−1(𝛿𝑤 − 𝛿𝑣𝑣
−1𝑤),

𝜎 := 𝜙(𝑤/𝑣)−∇𝜙[𝑤/𝑣],

𝜒(𝛿) := 𝛿𝑢 − 𝛿𝑣𝜎 −∇𝜙[𝛿𝑤],

𝜏 := 1
2
𝜁−1

(︀
∇2𝜙[𝜉(𝛿1)(𝜁−1𝜒(𝛿2) + 𝛿2𝑣/𝑣) + 𝜉(𝛿2)(𝜁−1𝜒(𝛿1) + 𝛿1𝑣/𝑣)]−

∇3𝜙[𝜉(𝛿1), 𝜉(𝛿2)]
)︀
.

Then:

𝑇𝑢 = −2𝜁−3𝜒(𝛿1)𝜒(𝛿2)− 𝑣𝜁−2∇2𝜙[𝜉(𝛿1), 𝜉(𝛿2)],

𝑇𝑣 = 2𝑇𝑢𝜎 + 2⟨𝜏, 𝑤/𝑣⟩ − 𝜁−1∇2𝜙[𝜉(𝛿2), 𝜉(𝛿2)]− 2𝑞2𝑣−3,

𝑇𝑤 = 2𝑇𝑢∇𝜙− 2𝜏 − 2𝑃 (𝑤−1/2)(𝑃 (𝑤−1/2)𝛿1𝑤𝑃 (𝑤−1/2)𝛿2𝑤).

200



Radial power cone

Let 𝜙(𝑤) =
∏︀

𝑖∈J𝑑K 𝑤
2𝛼𝑖 , (𝑢,𝑤) ∈ int(𝒦rpower), and:

𝑐1 := 4(2𝜙(𝑤)
𝜁
− 1)⟨𝛼

𝑤
, 𝛿1𝑤⟩⟨𝛼𝑤 , 𝛿

2
𝑤⟩+ 2

∑︀
𝑖∈J𝑑K 𝛼𝑖

𝛿1𝑤,𝑖𝛿
2
𝑤,𝑖

𝑤2
𝑖

, (7.11a)

𝑐2 := 2
(︀
⟨𝛼
𝑤
, 𝛿1𝑤⟩⟨𝑢, 𝛿2𝑢⟩+ ⟨𝛼𝑤 , 𝛿

2
𝑤⟩⟨𝑢, 𝛿1𝑢⟩

)︀
, (7.11b)

𝑐3 := 4 ⟨𝑢,𝛿1𝑢⟩⟨𝑢,𝛿2𝑢⟩
𝜁

+ ⟨𝛿1𝑢.𝛿2𝑢⟩, (7.11c)

where division between vectors should be interpreted componentwise. Then:

𝑇𝑢 = 2𝜁−2
(︀
𝜙(𝑤)(𝑤(𝑐1 − 4𝑐2

𝜁
)− 2⟨𝛼

𝑤
, 𝛿1𝑤⟩𝛿2𝑢 − 2⟨𝛼

𝑤
, 𝛿2𝑤⟩𝛿1𝑢) + 2(𝑐3𝑤 + ⟨𝑢, 𝛿1𝑢⟩𝛿2𝑢 +

⟨𝑢, 𝛿2𝑢⟩𝛿1𝑢)
)︀
,

(7.12a)

𝑇𝑤 = 2
(︀𝜙(𝑤)

𝜁
(1− 𝜙(𝑤)

𝜁
)𝛼
𝑤
(𝑐1 +

2
𝑤
(⟨𝛼

𝑤
, 𝛿1𝑤⟩𝛿2𝑤 + ⟨𝛼

𝑤
, 𝛿2𝑤⟩𝛿1𝑤)) + (𝛼−1

𝑤
− 2𝜙(𝑤)

𝜁
𝛼
𝑤
) 𝛿

1
𝑤

𝑤
𝛿2𝑤
𝑤
+

2𝜙(𝑤)
𝜁

𝛼
𝑤
(𝜙(𝑤)+𝑢

𝜁
𝑐2 + 𝑤−1(⟨𝑢, 𝛿1𝑢⟩𝛿2𝑤 + ⟨𝑢, 𝛿2𝑢⟩𝛿1𝑤)− 𝑐3)

)︀
.

(7.12b)

Infinity norm cone

Let (𝑢,𝑤) ∈ int(𝒦ℓ∞) and:

𝜇 := 𝑤
𝑢
, (7.13a)

𝑐1,𝑖 := 𝜁−1(𝛿2𝑤,𝑖𝜇𝑖 − 𝛿2𝑢)(𝛿
1
𝑢 − 𝛿1𝑤,𝑖𝜇𝑖) +

1
2𝑢
(𝛿1𝑢𝛿

2
𝑢 − 𝛿1𝑤,𝑖𝛿

2
𝑤,𝑖) ∀𝑖 ∈ J𝑑K, (7.13b)

𝑐2,𝑖 := − 1
2𝑢
(𝛿1𝑢𝛿

2
𝑤,𝑖 + 𝛿2𝑢𝛿

1
𝑤,𝑖) ∀𝑖 ∈ J𝑑K. (7.13c)

Then:

𝑇𝑢 = 2𝛿1𝑢𝛿
2
𝑢
(𝑑−1)
𝑢3 + 2

∑︀
𝑖∈J𝑑K 𝜁

−2
𝑖 (𝑐1,𝑖 + 𝜇𝑖𝑐2,𝑖 +

𝛿1𝑢𝛿
2
𝑢

𝑢
), (7.14a)

𝑇𝑤,𝑖 = 2𝜁−2
𝑖 (𝑐2,𝑖 − 𝜇𝑖(𝑐1,𝑖 −

𝛿1𝑤,𝑖𝛿
2
𝑤,𝑖

𝑢
)) ∀𝑖 ∈ J𝑑K. (7.14b)
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Spectral norm cone

Let (𝑢,𝑊 ) ∈ int(𝒦ℓspec) (ignoring Hypatia’s vectorization for 𝑊 ) and:

𝑍 := 𝑢𝐼 −𝑊⊤𝑊, (7.15a)

𝜏 := 𝑍−1𝑊, (7.15b)

𝑐1 := 𝛿1𝑊 𝜏𝛿2𝑊 + 𝛿2𝑊 𝜏𝛿1𝑊 , (7.15c)

𝑐2 := 𝛿1𝑊 (𝑊⊤𝑍−1𝑊 + 𝐼)𝛿2𝑊 , (7.15d)

𝑐3 := 𝛿1𝑢𝛿
2
𝑊𝑊⊤𝑍−1 + 𝛿2𝑢𝛿

1
𝑊𝑊⊤𝑍−1, (7.15e)

𝑐4 := 𝛿1𝑢𝑍
−1𝛿2𝑊 + 𝛿2𝑢𝑍

−1𝛿1𝑊 . (7.15f)

Then:

𝑇𝑢 = 2
(︀
𝛿1𝑢𝛿

2
𝑢(6𝑢 tr(𝑍

−2)− 8𝑢3 tr(𝑍−3) + 𝑑1−1
𝑢3 ) + (7.16a)

2⟨𝑐3, 4𝑢2𝑍−1𝜏 − 𝜏⟩ − 2𝑢⟨𝛿2𝑊 , 𝑍−2𝛿1𝑊 (𝑊⊤𝜏 + 𝐼)+ (7.16b)

(𝑍−1𝛿1𝑊 𝜏⊤ + 𝜏𝛿1𝑊𝑍−1 + 𝑍−1𝜏𝛿1
⊤

𝑊 )𝜏⟩
)︀
, (7.16c)

𝑇𝑤 = 2
(︀
𝛿1𝑢𝛿

2
𝑢(8𝑢

2𝑍−3𝑊 − 2𝑍−2𝑊 ) + (7.16d)

𝑍−1(−2𝑢(𝑐3 + 𝑐⊤3 ) + 𝑐2 + 𝑐⊤2 )𝜏 + 𝑍−1(−2𝑢𝑐4 + 𝑐1)(𝑊
⊤𝜏 + 𝐼) + (7.16e)

𝜏(𝑐1 + 𝑐⊤1 )(𝑊
⊤𝜏 + 𝐼) + 𝜏(𝑐⊤1 − 2𝑢𝑐4)𝜏

)︀
. (7.16f)

7.2.3 Implementing an ℓ1 norm cone

Among 𝒦log, 𝒦hpower, and 𝒦rpower, the primal and dual cones have similar modeling

power. However 𝒦*
ℓ∞

models a very different set to 𝒦ℓ∞ . Recall that Hypatia is able

to support both ℓ∞ and ℓ1 norm constraints using the oracles of 𝒦ℓ∞ . In other words,

if 𝒦*
ℓ∞

is the 𝑘th cone in 𝒦, then 𝒦𝑘 ∈ 𝐾pr from Section 2.4.1. Analogous treatment

in MOSEK’s algorithm would mean (7.3b) looks like:

𝛿𝑠,𝑘 + 𝐻̄𝑘(𝑧𝑘)𝛿𝑧,𝑘 = 𝑟𝑘, (7.17)
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if 𝒦𝑘 = 𝒦ℓ∞ . Empirically, we see better performance by implementing 𝒦*
ℓ∞

= 𝒦ℓ1

as a primal cone i.e. treat it as a cone in 𝐾pr. This is straightforward using various

oracles we already derived for 𝒦ℓ∞ in these last two chapters. The gradient oracle

for 𝒦ℓ1 is the conjugate gradient oracle for 𝒦ℓ∞ . The Hessian oracle may be obtained

using (6.99). 𝑇 is also easy to calculate, using:

∇3𝑓(𝑠)[𝛿1, 𝛿2] = 𝐻(𝑠) · ∇3𝑓 *(−𝑔(𝑠))[𝐻(𝑠)𝛿1, 𝐻(𝑠)𝛿2], (7.18)

which is derived from (6.99). Analogously, the nuclear norm cone can be supported

as a primal cone, and we refer to it by 𝒦nuc in Table 7.3.

7.2.4 Test problems

We compare the performance of Hypatia’s default algorithm (the combined stepper

from Chapter 2) with an implementation of MOSEK’s algorithm as a stepper in Hypa-

tia. Our primary interest is in comparing iteration counts between the two steppers,

and the stability of the algorithms (the number of times a certificate is returned suc-

cessfully) to empirically compare the quality of search directions. For this reason we

do not report on solve times (and our implementation of MOSEK’s algorithm has not

been optimized for computational speed). We are only interested in problems that

include cones studied in Chapter 6. As previously argued, problem instances with at

least one cone that requires a generic multivariate Newton method for the 𝑔* oracle

would be better suited to Hypatia’s algorithm than MOSEK’s. We use two sets of

test problems. The first set includes all CBLIB [Friberg, 2018] problems with at least

one three-dimensional exponential cone or a three-dimensional power cone (all other

problems in the CBLIB library include only symmetric cones). If integer variables are

present, we solve the convex relaxation. Overall, 204 test instances are retained. The

second set includes all the test instances from Section 2.7.1 that include a combination

of cones studied in Chapter 6 and symmetric cones. Again, we exclude instances that

include only symmetric cones. Making comparisons on those instances is not didactic

and it is expected that MOSEK’s algorithm with symmetric search directions would
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perform better than Hypatia’s combined stepper. Overall, 105 test instances from

Hypatia’s benchmark set are retained, and at least one of the stepping procedures

converges in 100 of the instances. We summarize the number of instances and cone

types from each example (that has at least some instances meeting our criteria on

cone types) in Table 7.3.

In Figure 7-2 we plot histograms of the logarithm of the number of iterations

taken on converged instances for Hypatia’s default stepper (Hyp) and the MOSEK

stepper (Mos). For both the CBLIB test set and Hypatia’s benchmark set, the his-

togram corresponding to MOSEK’s algorithm is shifted to left compared to Hypatia’s

default stepper. In Tables 7.4 and 7.5 we give the number of converged instances, the

number of nearly converged instances (this is a status that is returned by Hypatia),

and shifted geometric means of counts of iterations (using the same groupings as in

Section 2.7.2 to handle convergence failures and the shifted geometric mean formula

(2.41)). On the CBLIB instances, both steppers solve the same set of problems. On

Hypatia’s benchmark set, our implementation of MOSEK’s algorithm results in 16

fewer converged instances than Hypatia’s default stepper. Five of these failing in-

stances include nuclear norm constraints. We expect that an implementation of the

adjustment term for the spectral norm cone that is based on a singular value decom-

position (analogous to the implementation very recently proposed by Coey [2022])

instead of (7.16) would remedy these failures and slightly reduce the gap in number

of solved instances. Overall, our implementation of MOSEK’s algorithm gives lower

geometric means of iteration counts and fewer iterations on the majority of instances,

but is less reliable on Hypatia’s benchmark problems than the combined stepper. The

improvement in iteration counts is around 18%–22% in the every set.
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example # cones in at least one instance

central polynomial matrix 12 𝒦≥ 𝒦⪰ 𝒦rpower 𝒦rtdet 𝒦log 𝒦logdet

classical-quantum capacity 4 𝒦≥ 𝒦⪰ 𝒦log

covariance estimation 9 𝒦≥ 𝒦⪰ 𝒦rpower 𝒦rtdet 𝒦log

density estimation 12 𝒦≥ 𝒦⪰ 𝒦hgeom 𝒦log

discrete maximum likelihood 3 𝒦≥ 𝒦hpower 𝒦log

D-optimal design 13 𝒦≥ 𝒦⪰ 𝒦ℓ∞ 𝒦ℓ2 𝒦hgeom 𝒦rtdet 𝒦log 𝒦logdet

experiment design 8 𝒦≥ 𝒦⪰ 𝒦rpower 𝒦rtdet 𝒦log 𝒦logdet

matrix completion 8 𝒦≥ 𝒦⪰ 𝒦ℓspec 𝒦nuc 𝒦rpower 𝒦hgeom 𝒦log

matrix regression 3 𝒦⪰ 𝒦ℓ1 𝒦ℓ2 𝒦sqr 𝒦nuc

maximum volume hypercube 8 𝒦ℓ∞ 𝒦ℓ1 𝒦ℓ2 𝒦hgeom

nonparametric distribution 6 𝒦≥ 𝒦hgeom 𝒦log

portfolio 4 𝒦ℓ∞ 𝒦ℓ1

robust geometric programming 3 𝒦≥ 𝒦log

shape constrained regression 2 𝒦⪰ 𝒦ℓ1

signomial minimization 2 𝒦≥ 𝒦log

sparse principal components 3 𝒦⪰ 𝒦ℓ1

Table 7.3: For each example, the count of instances and list of exotic cones (defined
in Section 2.5) used in at least one instance (and at least one stepping procedure
converged).
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Figure 7-2: Overlayed histograms of log10 of iteration counts, excluding instances
that fail to converge.
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geomean iters

count converged count nearly every this all

Hyp 100 0 21.9 21.9 21.9
Mos 84 16 17.4 17.4 21.0

Table 7.4: For each algorithm, the number of converged instances, nearly converged
instances, and geometric mean of iteration counts using 100 of Hypatia’s benchmark
problems.

geomean iters

count converged count nearly every this all

Hyp 202 1 22.3 22.3 22.5
Mos 202 1 16.2 16.2 16.3

Table 7.5: For each algorithm, the number of converged instances, nearly converged
instances, and geometric mean of iteration counts using 204 CBLIB problems.
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7.3 Conclusions and future work

The stepper using MOSEK’s search directions performed very well on problems with

three-dimensional exponential and power cones, and had some advantages for other

problems with cones from Chapter 6. An interesting question is whether we can use

ideas from those search directions to improve iteration counts in problems for other

exotic cones. We were not able to make progress towards efficient procedures for eval-

uating the conjugate gradient of several classes of cones- including Hypatia’s separable

spectral function cone, the LMI cone, the dual cone of sum-of-squares polynomials,

or the sparse PSD matrix cone with general sparsity patterns. Indeed, efficient pro-

cedures for the conjugate gradients of these cones would give us efficient procedures

for evaluating the corresponding conjugate barriers, which are not known in the lit-

erature. It may be possible to create hybrid stepping strategies if the cones in the

problem are a combination of cones that admit efficient conjugate gradients and cones

that do not. That is, the components of the search direction corresponding to cones

with efficiently computable conjugate gradients could be calculated as in MOSEK’s

algorithm, and those that do not could be computed differently. However, such a

strategy would lose some of the properties proved by Dahl and Andersen [2021], such

as ensuring the violations on the residuals gap and complementarity gap decrease at

the same rate. In addition, since the neighborhood definitions in Hypatia’s algorithm

and MOSEK’s algorithm are well suited for their respective search directions, a hy-

brid strategy may require choosing different step lengths 𝛼̂ for different cones, which

makes the choice of step length on the 𝑥 and 𝑦 variables ambiguous.
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