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Background

• In previous talks we introduced our generic interior point solver
Hypatia

• Hypatia allows users to define their own exotic cones
• We confine exotic cones to those for which we have analytic
oracles

• We call cones that other solvers know how to optimize over the
standard cones
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Background

Standard cones: Exotic cones:

1. R+

2. S+
3. {(u,w) : u ≥ ‖w‖}
4. {(u, v,w) : 2uv ≥ ‖w‖2}
5. {(u, v,w) : u ≥ v exp(w/v)}
6. {(u, v,w) : |w| ≤ uαv1−α}

1. ℓ∞/ℓ1-norm cones
2. Generalized power cone
3. Sum-of-squares
polynomials

4. Sparse PSD matrices
5. LMI cone

...23 in Hypatia

• More specialized cones→ smaller, natural formulations that are
faster to solve and simpler to write (see
https://arxiv.org/abs/2005.01136)
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A separable spectral function cone

Cones that look like this:

K = cl{(u, v,W) ∈ R× R> × Sd+ : u ≥ vφ(W/v)}

• (v,W) 7→ vφ(W/v) is the perspective function of φ
• φ is a separable spectral function and convex on S+
• For this talk, think of spectral functions as function of
eigenvalues of a matrix

• φ(W) =
∑

i h(λi(W)) = tr(h(W))
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A separable spectral function cone

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

h(w) = − log(w) φ(W) = − logdet(W) u ≥ −v logdet(W/v)
h(w) = w log(w) φ(W) = tr(W log(W)) u ≥ tr(W log(W/v))
h(w) = wp φ(W) = tr(Wp) u ≥ tr(Wp/vp−1)

4



A separable spectral function cone

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

h(w) = − log(w)

φ(W) = − logdet(W) u ≥ −v logdet(W/v)
h(w) = w log(w) φ(W) = tr(W log(W)) u ≥ tr(W log(W/v))
h(w) = wp φ(W) = tr(Wp) u ≥ tr(Wp/vp−1)

4



A separable spectral function cone

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

h(w) = − log(w) φ(W) = − logdet(W)

u ≥ −v logdet(W/v)
h(w) = w log(w) φ(W) = tr(W log(W)) u ≥ tr(W log(W/v))
h(w) = wp φ(W) = tr(Wp) u ≥ tr(Wp/vp−1)

4



A separable spectral function cone

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

h(w) = − log(w) φ(W) = − logdet(W) u ≥ −v logdet(W/v)

h(w) = w log(w) φ(W) = tr(W log(W)) u ≥ tr(W log(W/v))
h(w) = wp φ(W) = tr(Wp) u ≥ tr(Wp/vp−1)

4



A separable spectral function cone

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

h(w) = − log(w) φ(W) = − logdet(W) u ≥ −v logdet(W/v)
h(w) = w log(w) φ(W) = tr(W log(W)) u ≥ tr(W log(W/v))

h(w) = wp φ(W) = tr(Wp) u ≥ tr(Wp/vp−1)

4



A separable spectral function cone

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

h(w) = − log(w) φ(W) = − logdet(W) u ≥ −v logdet(W/v)
h(w) = w log(w) φ(W) = tr(W log(W)) u ≥ tr(W log(W/v))
h(w) = wp φ(W) = tr(Wp) u ≥ tr(Wp/vp−1)

4



Extended formulation

Suppose φ(W) = f(λ(W)). From Ben-Tal and Nemirovski [2,
Proposition 4.2.1.]:

(u, v,W) ∈ K
m

∃x1, . . . , xd, v :
u ≥ vf(x/v)

x1 ≥ x2 ≥ . . . ≥ xd∑j
i=1 λi(W) ≤

∑j
i=1 xi, ∀j ∈ 1, . . . ,d
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A barrier function

K = cl{(u, v,W) ∈ R× R++ × Sd+ : u ≥ vφ(W/v)}

• f is ν-logarithmically homogeneous if f(θw) = f(w)− ν log(θ) for
all θ ∈ R

• The “obvious” guess for a barrier is:

Γ(u, v,W) = − log(v)− logdet(W)− log(u− vφ(W/v))

• Γ is logarithmically homogeneous with parameter 2+ d, but we
also need self-concordance

• |∇3Γ(x)[h,h,h]| ≤ 2∇2Γ(x)[h,h]3/2 for all x,h
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When is the barrier SC?

Definition
h is matrix monotone if w1 � w2 implies h(w1) � h(w2) for all
w1,w2 ∈ Sd for all integers d.

• E.g. W 7→ −W−1 is matrix-monotone
• E.g. W 7→ exp(W) is monotone, but not matrix-monotone

We will now require that φ(W) = tr(h(W)) is such that h′ is matrix
monotone.
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When is the barrier SC?

Let:
S = {(u,W) : u ≥ φ(W)}

K is the conic hull of S .

Faybusovich and Tsuchiya [4] showed that under the same
conditions, S admits the (1+ d)-self-concordant barrier:

(u,W) 7→ − logdet(W)− log(u− φ(W)).

Modified result by Nesterov and Nemirovskii [5, Proposition 5.1.4]
gives an LHSCB with parameter 9.48(1+ d) for K.

Theorem
Γ in is a (2+ d)-LHSCB for K.

Proof.
See https://pubsonline.informs.org/doi/abs/10.1287/
moor.2022.1324.
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NB: a newer result

Newer result by Fawzi and Saunderson [3] implies

• Γ is self-concordant for matrix-convex h (rather than
matrix-monotone h′)

• 2+ d is the optimal barrier parameter
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The dual cones

• Adding a cone in Hypatia makes both primal and dual available
• Let:

φ∗(R) = supW⪰0{−〈W,R〉 − φ(W)}

• Then:
K∗ := cl{(u, v,W) : u > 0, v ≥ uφ∗(W/u)}

• This is a consequence of Rockafellar [6, Theorem 14.4] and Zhang
[7, Theorem 3.2]

• If φ = tr(h(W)) then φ∗ = tr(h∗(W)) due to [1, Lemma 29 and
Theorem 30]
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Examples

function h h′ dom(h∗) h∗

NegLog − log(x) −x−1 R++ −1− log(x)
NegEntropy x log(x) 1+ log(x) R exp(−1− x)
NegSqrt −

√
x − 1

2x
−1/2 R++

1
4x

−1

NegPower, p ∈ (0, 1) −xp −pxp−1 R+ −(p− 1)(x/p)q
Power, p ∈ (1, 2] xp pxp−1 R (p− 1)(x−/p)q

q := p/(p− 1) and x− := max(−x, 0)
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Examples

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4
− log(x)
x log(x)
−
√
x

x3/2
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Hypatia’s generic cone

13



Hypatia’s generic cone

import Hypatia
import Hypatia.Cones.EpiPerSepSpectralCone
import Hypatia.Cones.NegSqrtSSF
import Hypatia.Cones.MatrixCSqr
using JuMP

model = Model(Hypatia.Optimizer)
@variable(model, x[1:3])
cone = EpiPerSepSpectralCone{Float64}(NegSqrtSSF(),

MatrixCSqr{Float64, Float64}, 1, true)
@constraint(model, x in cone)
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The Hessian

For

Γ(u, v,W) := − log(u− vφ(W/v))− log(v)− logdet(W),

∇2Γ =



∇2Γu,u ∇2Γu,v . . . ∇2Γu,w . . .

∇2Γv,u ∇2Γv,v . . . ∇2Γv,w . . .
...

... . . .
∇2Γw,u ∇2Γw,v ∇2Γw,w

...
... . . .


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The Hessian

∇2Γu,u = ζ−2,

∇2Γv,u = −ζ−2σ,

∇2Γw,u = −ζ−2∇φ,

∇2Γv,v = v−2 + ζ−2σ2 + v−1ζ−1∇2φ[w/v,w/v],
∇2Γw,v = ζ−2σ∇φ− v−1ζ−1∇2φ[w/v],
∇2Γw,w = ζ−2(∇φ)(∇φ)′ + v−1ζ−1∇2φ+W−1 ⊗W−1

= ζ−2(∇φ)(∇φ)′ + (G⊗ G)Diag(vec(M))(G⊗ G)′.

where:

• ζ = u− vφ(W/v)
• σ = φ−∇φ[w/v]
• W = GDiag(λ)G′

• Mi,j = v−1ζ−1 h
′(λi)−h′(λj)

λi−λj
+ λ−1

i λ−1
j

16



The Hessian

∇2Γu,u = ζ−2,
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= ζ−2(∇φ)(∇φ)′ + (G⊗ G)Diag(vec(M))(G⊗ G)′.

Note that:

(G⊗ G) vec(R) = vec(G′RG)(
(G⊗ G)Diag(vec(M))(G⊗ G)′

)−1
= (G⊗ G)Diag(vec(M))−1(G⊗ G)′
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The inverse Hessian

(∇2Γ)−1u,u = k3k4(ζ2 + β),

(∇2Γ)−1v,u = k1k4,
(∇2Γ)−1w,u = α+ k1k4γ,
(∇2Γ)−1v,v = k4,
(∇2Γ)−1w,v = k4γ,
(∇2Γ)−1w,w = k4γγ′ + (G⊗ G)Diag(vec(M))−1(G⊗ G)′.

where:

α := (G⊗ G)Diag(vec(M)−1 · ∇φ)(G⊗ G)′

β := 〈α,∇φ〉
γ := (G⊗ G)Diag(vec(M)−1 · ∇2φ[w])(G⊗ G)′
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TOO

For T := − 1
2∇

3Γ[δ, δ] with δ = (p,q, r):

Tu = ζ−3χ2 + 1
2vζ

−2∇2φ[ξ, ξ], (7a)
Tv = −Tuσ − tr(τ ◦W/v) + 1

2ζ
−1∇2φ[ξ, ξ] + q2v−3, (7b)

TW = −Tu∇φ+ τ +W−1RW−1RW−1. (7c)

Where:

ξ = v−1(r− qv−1W)

τ = ζ−2(χ+ qv−1)∇2φ[ξ]− 1
2ζ

−1∇3φ[ξ, ξ]

χ = p− qσ −∇φ[r]

Most expensive part is done in O(d3).
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Conclusions

• We have a general class of cones for which the “obvious” barrier
is self-concordant

• The “separable spectral function” cone has highly structured
oracles

• Main block in the Hessian is a Kronecker plus a rank one term (or a
diagonal plus rank one for vector analogs)

• Inverse Hessian has the same structure as the Hessian (good news
for the dual cones)
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Constants for the inverse Hessian

k1 := σ + (∇φ)[γ]

k2 :=
k1

ζ2 +∇φ[α]

k3 := v−2 + σk1
∑
i

(v−1λi + k1αi − γi)(∇2h)iλi

k4 := (k3 − k1k2)−1
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